K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

\(\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{\left(b-2\right)\left(c-2\right)}{\left(b-1\right)\left(c-1\right)}}\)

Tương tự với \(\frac{1}{b-1};\text{ }\frac{1}{c-1}\)

Rồi nhân theo vế 3 bất đẳng thức: 

\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge8\sqrt{\frac{\left(a-2\right)^2\left(b-2\right)^2\left(c-2\right)^2}{\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2}}=8\frac{\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

\(\Rightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)

Vậy GTLN của H là 0,125.

Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}.\)

3 tháng 11 2016

\(\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2\)

\(\Leftrightarrow\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)\)

\(\Leftrightarrow\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\)

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{c-2}{c-1}}\)

Tương tự : \(\frac{1}{b-1}\ge2\sqrt{\frac{a-2}{a-1}.\frac{c-2}{c-1}}\)

\(\frac{1}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{a-2}{a-1}}\)

Nhân các BĐT theo vế : 

\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge\frac{8\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

\(\Leftrightarrow8\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\Leftrightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}\)

Vậy maxH = 1/8 <=> a = b = c = 5/2

21 tháng 4 2015

chữ xấu thế em, anh không nhìn thấy

11 tháng 4 2017

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)

Cộng vế theo vế ta được

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)

\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

10 tháng 4 2017

Mai mình làm cho

20 tháng 5 2019

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)

27 tháng 12 2015

ai bố thí tui 2 tick lên bảng xếp hạng đi