K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

14 tháng 7 2016

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

14 tháng 4 2020

Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)(đpcm)