K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 6

Lời giải:

$a=b+1\Rightarrow a-b=1$

Khi đó:

$(a+b)(a^2+b^2)(a^4+b^4)=(a-b)(a+b)(a^2+b^2)(a^4+b^4)$

$=(a^2-b^2)(a^2+b^2)(a^4+b^4)=(a^4-b^4)(a^4+b^4)=a^8-b^8$

11 tháng 6 2016

Từ a = b + 1 ta suy ra \(a-b=1\)

Do đó : \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)...\left(a^{32}+b^{32}\right)=\left(a^4-b^4\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)

Tiếp tục thu gọn theo cách trên ta được đpcm.

16 tháng 12 2015

a=b+1

=>a-b=1

Suy ra: VT=(a+b)(a2+b2)(a4+b4)(a8+b8)

=(a-b)(a+b)(a2+b2)(a4+b4)(a8+b8)

=(a2-b2)(a2+b2)(a4+b4)(a8+b8)

=(a4-b4)(a4+b4)(a8+b8)

=(a8-b8)(a8+b8)

=a16-b16=VP

=>điều phải chứng minh

26 tháng 4 2016

 (a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16

=1.(a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16) 

= (a – b) (a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16

= (a2 – b2) (a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16

= (a4 – b4)(a4 + b4)(a8 + b8)(a16 + b16)

= (a8 – b8)(a8 + b8)(a16 + b16)

= (a16– b16)(a16 + b16)

= a32 – b32 

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

4 tháng 12 2015

 

        \(M=1.\left(a+b\right)\left(a^2+b^2\right).......\)

    \(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)....\)

   \(=\left(a^2-b^2\right)\left(a^2+b^2\right)....\)

                        \(=\left(a^4-b^4\right)\left(a^4+b^4\right)......\)

                                            \(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)

                                                             \(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\)

                                                              \(=a^{32}-b^{32}\)