K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)

Khi đó , BĐT cần CM tương đương với:

\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)

Áp dụng bất đẳng thức AM-GM:

\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)

Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

NV
14 tháng 9 2020

Đặt \(\left(x;y;z\right)=\left(2a^2;2b^2;2c^2\right)\Rightarrow abc=1\)

\(VT=\frac{1}{4a^2+2b^2+6}+\frac{1}{4b^2+2c^2+6}+\frac{1}{4c^2+2a^2+6}\)

\(VT=\frac{1}{\left(2a^2+2\right)+\left(2a^2+2b^2\right)+4}+\frac{1}{\left(2b^2+2\right)+\left(2b^2+2c^2\right)+4}+\frac{1}{\left(2c^2+2\right)+\left(2c^2+2a^2\right)+4}\)

\(VT\le\frac{1}{4a+4ab+4}+\frac{1}{4b+4bc+4}+\frac{1}{4c+4ca+4}=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=2\)

7 tháng 3 2021

toán lớp mấy v 

1hay 23456789

NV
14 tháng 5 2020

\(H=\sum\frac{y}{x^2+1+2y+2}\le\sum\frac{y}{2x+2y+2}=\frac{1}{2}\sum\frac{y}{x+y+1}\)

Ta sẽ chứng minh \(H\le\frac{1}{2}\) hay \(\frac{y}{x+y+1}+\frac{z}{y+z+1}+\frac{x}{z+x+1}\le1\)

\(\Leftrightarrow\frac{x+1}{x+y+1}+\frac{y+1}{y+z+1}+\frac{z+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x+y+1\right)}+\frac{\left(y+1\right)^2}{\left(y+1\right)\left(y+z+1\right)}+\frac{\left(z+1\right)^2}{\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\left(x+1\right)\left(x+y+1\right)+\left(y+1\right)\left(y+z+1\right)+\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{x^2+y^2+z^2+xy+yz+zx+3x+3y+3z+3}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x^2+y^2+z^2\right)+xy+yz+zx+3x+3y+3z+3+\frac{1}{2}\left(x^2+y^2+z^2\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+3+\frac{3}{2}}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{2}}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z+3\right)^2}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

12 tháng 12 2019

\(\frac{3}{4}=\Sigma\frac{1}{2x+y+z}\ge\frac{9}{4\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\ge3\)

\(\frac{3}{4}=\Sigma\frac{1}{2x+y+z}\le\frac{1}{16}\Sigma\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\)

\(\Sigma\left(x+\frac{1}{y}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(3+3\right)^2}{3}=12\)

Dấu "=" xảy ra khi \(x=y=z=1\)