K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\geq \frac{(a+b+c)^2}{ab+ac+bc+ba+ca+cb}=\frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

$(a+b+c)^2\geq 3(ab+bc+ac)$

Do đó:

$P\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$ khi $a=b=c$

21 tháng 6 2020

áp dụng bất đẳng thứcxvaco \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

suy ra P >= (a+b+c)^2/ 2 (a+b+c)=1/2

Dấu bằng xảy ra <=> \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

24 tháng 4 2018

@Lightning Farron help me

4 tháng 8 2020

hình như sai sai !! nên ....

NV
4 tháng 8 2020

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\end{matrix}\right.\)

\(\Rightarrow\frac{a^3}{b+c}\ge\frac{b^3}{c+a}\ge\frac{c^3}{a+b}\)

Do đó áp dụng BĐT Chybeshev:

\(\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left[\frac{a^3}{b+c}.\left(b+c\right)+\frac{b^3}{c+a}\left(c+a\right)+\frac{c^3}{a+b}\left(a+b\right)\right]\)

\(\Leftrightarrow\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{3}{2}.\frac{a^3+b^3+c^3}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Hình như bạn bị lỗi một chút. Để phải là: CM

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}\geq 2\)

Giải như sau:

Đặt \(\left ( \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} \right )=(x,y,z)\). Khi đó, ta thu được điều kiện sau:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\Leftrightarrow xy+yz+xz+2xyz=1\)

Bài toán chuyển về CM \(x+y+z+\sqrt{2xyz}\geq 2\)\(\)

\(\Leftrightarrow x+y+z+\sqrt{1-(xy+yz+xz)}\geq 2\) \((\star)\)

Từ điều kiện $(1)$ , áp dụng BĐT Cauchy-Schwarz:

\(\left [ \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1} \right ][x(x+1)+y(y+1)+z(z+1)]\geq (x+y+z)^2\)

\(\Rightarrow x(x+1)+y(y+1)+z(z+1)\geq (x+y+z)^2\)

\(\Rightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$

Ta sẽ chứng minh \(2(xy+yz+xz)+\sqrt{1-(xy+yz+xz)}\geq 2\)$(2)$

Thật vậy:

Theo Am-Gm: \(1=xy+yz+xz+2xyz\leq xy+yz+xz+2\sqrt{\frac{(xy+yz+xz)^3}{27}}\)

Đặt \(\sqrt{\frac{xy+yz+xz}{3}}=t\). Ta có

\(1\leq 3t^2+2t^3\Leftrightarrow (t+1)^2(2t-1)\geq 0\Rightarrow t\geq\frac{1}{2}\)

Khi đó \((1)\Leftrightarrow 6t^2+\sqrt{1-3t^2}\geq 2\Leftrightarrow (2t-1)(2t+1)(3t^2-1)\leq0\)

Điều này luôn đúng do \(t\geq \frac{1}{2}\)\(1>xy+yz+xz=3t^2\)

Do đó $(1)$ được CM.

Từ \((1),(2)\Rightarrow (\star)\) đúng, bài toán được hoàn thành.

Dấu $=$ xảy ra khi $x=y=z=\frac{1}{2}$, hay $a=b=c$

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)

Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:

\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

NV
11 tháng 10 2019

\(P=\frac{b+c+5}{1+a}+\frac{c+a+4}{2+b}+\frac{a+b+3}{3+c}\)

\(\Rightarrow P+3=\frac{b+c+5}{1+a}+1+\frac{c+a+4}{2+b}+1+\frac{a+b+3}{3+c}+1\)

\(\Rightarrow P+3=\frac{a+b+c+6}{1+a}+\frac{a+b+c+6}{2+b}+\frac{a+b+c+6}{3+c}\)

\(\Rightarrow P+3=\frac{12}{1+a}+\frac{12}{2+b}+\frac{12}{3+c}\ge\frac{12.9}{6+a+b+c}=9\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=2\\c=1\end{matrix}\right.\)

19 tháng 10 2019

này là dấu gì @Nguyễn Việt Lâm