K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1 2021

\(T=21x+3y+\dfrac{21}{y}+\dfrac{3}{x}\)

\(T=\dfrac{x}{3}+\dfrac{3}{x}+\dfrac{7y}{3}+\dfrac{21}{y}+\dfrac{62}{3}x+\dfrac{2}{3}y\)

\(T\ge2\sqrt{\dfrac{3x}{3x}}+2\sqrt{\dfrac{147y}{3y}}+\dfrac{62}{3}.3+\dfrac{2}{3}.3=80\)

\(T_{min}=80\) khi \(x=y=3\)

14 tháng 1 2021

ok

13 tháng 10 2023

\(P=\dfrac{1}{2023}\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{2023.z}\dfrac{x+y}{xy}\)

Ap dung BDT cosi taco 

\(P\ge\dfrac{1}{2023z}.\dfrac{x+y}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{4}{2023z}\dfrac{1}{x+y}\)

<->\(P\ge\dfrac{4}{2023}\dfrac{1}{z\left(1-z\right)}=\dfrac{4}{2023}\dfrac{1}{-z^2+z}=\dfrac{4}{2023}\dfrac{1}{-\left(z-\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(< =>P\ge\dfrac{4}{2023}\dfrac{1}{\dfrac{1}{4}}=\dfrac{16}{2023}\)

\(P_{min}=\dfrac{16}{2023}\Leftrightarrow Z=\dfrac{1}{2},x=y=\dfrac{1}{4}\)

28 tháng 4 2022

Giúp mình câu này với ah. 

 

28 tháng 4 2022

a Ah box môn TA đâu gòi:)?

NV
17 tháng 8 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

NV
27 tháng 4 2021

\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)

\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)

\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)

9 tháng 5 2021

-5

NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673