K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

lại một ngôn ngữ mới được tạo ra

10 tháng 12 2018

cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
hãy tính \(B=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)

25 tháng 7 2021

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

25 tháng 7 2021

(a + b + c)2 + a2 + b2 + c2

=a2+b2+c2+2ab+2ac+2bc+a2+b2+c2

=(a2+2ab+b2)+(b2+2bc+c2)+(a2+2ac+c2)

=(a+b)2+(b+c)2+(a+c)2

9 tháng 8 2015

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

$\Rightarrow ab+bc+ac=0$

Đặt $ab=x, bc=y, ac=z$ thì $x+y+z=0$

Có:

$M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}$
$=\frac{b^3c^3+a^3c^3+a^3b^3}{(abc)^2}$

$=\frac{x^3+y^3+z^3}{xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{xyz}$

$=\frac{(-z)^3-3xy(-z)+z^3}{xyz}$
$+\frac{-z^3+3xyz+z^3}{xyz}=\frac{3xyz}{xyz}=3$

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

NV
10 tháng 3 2021

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

16 tháng 9 2018

Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=-\dfrac{1}{c^3}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{-1}{c}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}-\dfrac{3}{abc}=\dfrac{-1}{c^3}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(\Rightarrow A=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}\)

\(=\left(abc\right)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\)

=\(abc.\dfrac{3}{abc}\)

=3

Vậy A=3

26 tháng 3 2016

Đặt  \(A=\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\)  và   \(x=ab+1;\)  \(y=bc+1;\)  \(z=ca+1\)   \(\left(\text{*}\right)\)

Khi đó, với các giá trị tương ứng trên thì biểu thức  \(A\)  trở thành:   \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\)

Áp dụng bất đẳng thức Cauchy cho bộ ba phân số không âm của biểu thức trên (do  \(a,b,c>0\)), ta có:

 \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\ge3\sqrt[3]{\frac{cx^2}{b^2y}.\frac{ay^2}{c^2z}.\frac{bz^2}{a^2z}}=3\sqrt[3]{\frac{xyz}{abc}}\)  \(\left(\text{**}\right)\)

Mặt khác, do  \(ab+1\ge2\sqrt{ab}\)  (bất đẳng thức  AM-GM cho hai số \(a,b\) luôn dương)

              nên   \(x\ge2\sqrt{ab}\)  \(\left(1\right)\) (theo cách đặt ở  \(\left(\text{*}\right)\))

Hoàn toàn tương tự với vòng hoán vị   \(a\)  \(\rightarrow\)  \(b\)  \(\rightarrow\)  \(c\) và với chú ý cách đặt ở \(\left(\text{*}\right)\), ta cũng có:

\(y\ge2\sqrt{bc}\)  \(\left(2\right)\)  và  \(z\ge2\sqrt{ca}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được  \(xyz\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

Do đó,  \(3\sqrt[3]{\frac{xyz}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=3\sqrt[3]{8}=6\)  \(\left(\text{***}\right)\)  

Từ  \(\left(\text{**}\right)\)  và  \(\left(\text{***}\right)\)  suy ra được   \(A\ge6\), tức  \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\ge6\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

26 tháng 3 2016

mới học lớp 5  thôi