K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Xét \(\frac{5a^3-b^3}{ab+3a^2}\le2a-b\)(1)

<=> \(5a^3-b^3\le\left(2a-b\right)\left(ab+3a^2\right)\)

<=> \(5a^3-b^3\le6a^3-a^2b-b^2a\)

<=> \(a^3+b^3\ge ab\left(a+b\right)\)

<=> \(a^2-ab+b^2\ge ab\)

<=> \(\left(a-b\right)^2\ge0\)(luôn đúng)

=> (1) được CM

=> \(VT\le2a-b+2b-c+2c-a=a+b+c\le2018\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{2018}{3}\)

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

17 tháng 5 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Dấu " = " xảy ra <=> a=b=c=1

Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )

Dấu " = " xảy ra <=> a=b=c

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)

Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

20 tháng 7 2018

Thay \(a+b+c=3\) ta được:

\(VT=\frac{1}{a\left(a+b+c\right)+bc}+\frac{1}{b\left(a+b+c\right)+ca}+\frac{1}{c\left(a+b+c\right)+ab}\)

\(=\frac{1}{a^2+ab+ac+bc}+\frac{1}{b^2+ab+bc+ca}+\frac{1}{c^2+ca+bc+ab}\)

\(=\frac{1}{a\left(a+b\right)+c\left(a+b\right)}+\frac{1}{b\left(a+b\right)+c\left(a+b\right)}+\frac{1}{c\left(a+c\right)+b\left(a+c\right)}\)

\(=\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\)

\(=\frac{b+c+a+c+a+b}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{2\left(a+b+c\right)}{\sqrt{\left[\left(a+b\right)\left(a+c\right)\right].\left[\left(a+b\right)\left(b+c\right)\right].\left[\left(a+c\right)\left(b+c\right)\right]}}\)

\(=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}=VP\)  (Do \(a+b+c=3\))

=> ĐPCM.

18 tháng 5 2019

\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{3^2}{3}=3\)

Khi đó \(c^2+3\ge c^2+ab+bc+ca=\left(b+c\right)\left(a+c\right)\Leftrightarrow\sqrt{c^2+3}\ge\sqrt{b+c}\sqrt{a+c}\)

     \(a^2+3\ge a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\Leftrightarrow\sqrt{a^2+c}\ge\sqrt{\left(a+b\right)}\sqrt{a+c}\)

\(b^2+3\ge b^2+ab+bc+ca=\left(a+b\right)\left(b+c\right)\Leftrightarrow\sqrt{b^2+3}\ge\sqrt{a+b}\sqrt{b+c}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{ab}{\sqrt{b+c}\sqrt{a+c}}+\frac{bc}{\sqrt{a+b}\sqrt{a+c}}+\frac{ca}{\sqrt{a+b}\sqrt{b+c}}\)*

áp dụng bđt Cauchy ngược dấu 

\(\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{a+c}}\le\frac{\frac{1}{a+b}+\frac{1}{a+c}}{2}\Leftrightarrow\frac{2}{\sqrt{a+b}\sqrt{a+c}}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\Leftrightarrow\frac{2bc}{\sqrt{a+b}\sqrt{a+c}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

Chứng minh tương tự \(\frac{2ab}{\sqrt{a+c}\sqrt{b+c}}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

                                   \(\frac{2ca}{\sqrt{b+c}\sqrt{a+b}}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Kết hợp với * ta có 

\(\frac{2ab}{\sqrt{c^2+3}}+\frac{2bc}{\sqrt{a^2+3}}+\frac{2ca}{\sqrt{b^2+3}}\le\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\)

\(\Leftrightarrow2\left(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\right)=\frac{bc+ca}{a+b}+\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}=a+b+c\)

\(\Leftrightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}=\frac{3}{2}.\)

18 tháng 5 2019

nhầm xíu dòng thứ 2 từ dưới lên 

\(2\left(...\right)\ge\frac{ab}{..}...\)=...