K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Chuyên KHTN 2014 

bài này thuộc hàng cân = hệ số khủng 

21 tháng 8 2020

Do vai trò của a, b, c như nhau nên ta có thể dự đoán dấu bằng xảy ra tại \(a=b=c=dk\) với k dương

Áp dụng bất đẳng thức Cauchy cho các bộ ba số dương ta được

\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)(*) ; \(\frac{a^3}{k^3}+\frac{b^3}{k^3}+d^3\ge\frac{3adb}{k^2}\)(**) ; \(\frac{b^3}{k^3}+\frac{c^3}{k^3}+d^3\ge\frac{3bcd}{k^2}\)(***) ;\(\frac{c^3}{k^3}+\frac{a^3}{k^3}+d^3\ge\frac{3cda}{k^2}\)(****)

Cộng theo vế 4 bất đẳng thức (*), (**), (***), (****), ta được: \(\left(\frac{1}{k^2}+\frac{2}{k^3}\right)\left(a^3+b^3+c^3\right)+3d^3\ge\frac{3\left(abc+bcd+cda+dab\right)}{k^2}=\frac{3}{k^2}\)

Hay \(\left(\frac{3}{k^2}+\frac{6}{k^3}\right)\left(a^3+b^3+c^3\right)+9d^3\ge\frac{9}{k^2}\)

Ta cần tìm k để \(\frac{3}{k^2}+\frac{6}{k^3}=4\Leftrightarrow4k^3-3k-6=0\)và ta chọn k là số dương

Đặt \(k=\frac{1}{2}\left(x+\frac{1}{x}\right)^2\)thay vào phương trình trên và biến đổi ta thu được \(x^6-12x^3+1=0\)

Giải phương trình này ta được \(x=\sqrt[3]{6\pm\sqrt{35}}\), để ý \(\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)=1\)nên ta tính được \(k=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}\)

Do đó ta tính được giá trị nhỏ nhất của P là \(\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}d\)

20 tháng 5 2017

undefined

30 tháng 5 2017

Giải:

Trước hết ta chứng minh \(\forall x,y,z\ge0\) ta có: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Do vai trò \(a,b,c\) như nhau nên giả sử \(a=b=c=kd\)

Khi đó áp dụng \(\left(1\right)\) ta có:

\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)

\(d^3+\frac{a^3}{k^3}+\frac{b^3}{k^3}\ge\frac{3dab}{k^2}\)

\(d^3+\frac{b^3}{k^3}+\frac{c^3}{k^3}\ge\frac{3bdc}{k^2}\)

\(d^3+\frac{c^3}{k^3}+\frac{a^3}{k^3}\ge\frac{3dca}{k^2}\)

\(\Rightarrow3d^3+\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{3}{k^2}\left(abc+bcd+cda+dab\right)\)

\(\Rightarrow9d^3+3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{9}{k^2}.\)

Vậy ta tìm \(k\) thỏa mãn \(\Rightarrow3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)=4\Rightarrow4k^3-3k-6=0\)

Đặt \(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^2\) ta có:

\(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^3-\frac{3}{2}\left(a+\frac{1}{a}\right)=6\)

\(\Leftrightarrow x^6-12x^3+1=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt[3]{6+\sqrt{35}}\\x=\sqrt[3]{6-\sqrt{35}}\end{cases}}\)

\(\Rightarrow\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)=1\Rightarrow k=\frac{1}{2}\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)\)

Với \(k\) xác định như trên ta tìm được:

\(P_{min}=\frac{9}{k^2}=\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)

24 tháng 5 2017

bài này mk có cách làm r` mà hơi ngu mà hơi là ko dc làm gì phải dứt khoát chờ mk tìm cách ngu hơn

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

7 tháng 3 2020

Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :

\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)

Do đó : \(M\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

7 tháng 3 2020

Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)

Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)

Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Áp dụng BĐT Svacxo ta có :

\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)   \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)

1 tháng 9 2020

Ta có  \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow\sqrt[3]{abc}\le1\Leftrightarrow abc\le1\)(bđt AM-GM)

Khi đó \(P=2\left(ab+bc+ca\right)-abc\ge2\left(ab+bc+ca\right)-1\)

\(=2\left(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}\right)-1=2\left[abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]-1\)

\(=2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1=2.\frac{\left(1+1+1\right)^2}{a+b+c}-1=\frac{2.9}{3}-1=5\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy GTNN của \(P=5\)đạt được khi \(a=b=c=1\)

p/s : nói chung hướng làm là vậy thôi :v chứ minh làm sai chỗ nào rồi ý 

20 tháng 11 2019

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

20 tháng 11 2019

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

20 tháng 11 2019

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..