K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2016

VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm

Cách khác:

Từ giả thiết suy ra a>0a>0 và bc>0bc>0. Bất đẳng thức cần chứng minh tương đương với

a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0

Vì a3>36a3>36 nên

13+(b+ca)2−b+ca−3a3>(b+ca)2−b+ca+14=(b+ca−12)2>0.Đây là bài 1

1 tháng 3 2016

tự hỏi và giải luôn à

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
NV
25 tháng 7 2021

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

25 tháng 7 2021

ta có : \(a^2+b^2+c^2=ab+bc+ca\)

\(2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>}a=b=c\)

4 tháng 7 2022

thấy có chỗ chưa hợp lý lắm ă :>

 

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

9 tháng 9 2017

1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 ) 
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi ) 
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi ) 
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Dấu " = " xảy ra khi a = b = c. 


2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 ) 
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được : 
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] 
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c) 
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2 
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca. 
BĐT cuối đúng nên => đpcm ! 
Dấu " = " xảy ra khi a = b = c. 


3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4) 
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 ) 
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi ) 
= 2.abc(a + b + c) 
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Dấu " = " xảy ra khi a = b = c.