K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

\(\text{Đặt}\)\(x=a+b\ge2\)

\(P=\frac{a^2+b^2+5}{a+b+3}=\frac{a^2+b^2+2.1+3}{a+b+3}=\frac{a^2+b^2+2ab+3}{a+b+3}=\frac{\left(a+b\right)^2+3}{a+b+3}=\frac{x^2+3}{x+3}\)

\(\Rightarrow P-\frac{7}{5}=\frac{x^2+3}{x+3}-\frac{7}{5}=\frac{\left(5x^2+15\right)-\left(7x+21\right)}{x+3}=\frac{\left(x-2\right).\left(5x+3\right)}{x+3}\ge0\)

\(\text{Vậy giá trị nhỏ nhất của}\)\(P=\frac{7}{5}\Rightarrow x=2\)

\(\Rightarrow a+b=2;ab=1\)

\(\Rightarrow a=b=1\)

15 tháng 5 2021

\(P=a^2+b^2+\frac{5}{a+b+3}\left(a,b>0\right)\)..

\(P=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\right)-\frac{20}{a+b+3}\).

Trước hết, ta chứng minh được:

\(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)với \(x,y,z\in R;m,n,p>0\)\(\left(1\right)\)(tự chứng minh).

Dấu bằng xảy ra \(\Leftrightarrow\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\).

Áp dụng bất đẳng thức \(\left(1\right)\)với \(a,b>0\), ta được:

\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\ge\frac{\left(a+b+5\right)^2}{1+1+a+b+3}=\frac{\left(a+b+5\right)^2}{a+b+5}\)\(=a+b+5\).

\(\Leftrightarrow a^2+b^2+\frac{5^2}{a+b+3}-\frac{20}{a+b+3}\ge a+b+5-\frac{20}{a+b+3}\).

\(\Leftrightarrow P\ge a+b+5-\frac{20}{a+b+3}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{1}=\frac{b}{1}=\frac{5}{a+b+3}=\frac{a+b+5}{1+1+a+b+3}=1\).

\(\Leftrightarrow a=b=1\).

Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a+b\ge2\sqrt{ab}\).

\(\Leftrightarrow a+b\ge2.\sqrt{1}=2.1=2\)(vì \(ab=1\)).

\(\Leftrightarrow a+b+3\ge5\).

\(\Rightarrow\frac{1}{a+b+3}\le\frac{1}{5}\).

\(\Rightarrow\frac{-1}{a+b+3}\ge-\frac{1}{5}\).

\(\Leftrightarrow\frac{-20}{a+b+3}\ge\frac{-20}{5}=-4\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).

Ta lại có: \(a+b\ge2\)(chứng minh trên).

\(\Leftrightarrow a+b+5\ge7\left(4\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).

Từ \(\left(3\right)\)và \(\left(4\right)\), ta được:

\(a+b+5-\frac{20}{a+b+3}\ge7-4=3\left(5\right)\).

Từ \(\left(2\right)\)và \(\left(5\right)\), ta được:

\(P\ge3\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).

Vậy \(minP=3\Leftrightarrow a=b=1\).

19 tháng 5 2022

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2

6 tháng 4 2020

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

7 tháng 4 2020

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right) \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 7 2019

Áp dụng bất đẳng thức trên ta có  ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)

Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)

Áp dụng (1) và (2) ta có:

P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4

Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4