K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right).\\ \)
\(=3\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right) \\ \)
\(abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)=12\left(ab+bc+ca\right)-8abc-18\left(a+b+c\right)+27\\ \)
\(4abc\ge\frac{4}{9}\left(12\left(ab+bc+ca\right)-27\right)=\frac{16}{3}\left(ab+bc+ca\right)-12\)
\(a^3+b^3+c^3+abc\ge3\left(a^2+b^2+c^2\right)+\frac{7}{3}\left(ab+bc+ca\right)-12 =\frac{11}{6}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge4\\ \)

NV
5 tháng 1 2021

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{1}{xy\left(x+y\right)+xyz}+\dfrac{1}{yz\left(y+z\right)+xyz}+\dfrac{1}{zx\left(z+x\right)+xyz}\)

\(\Rightarrow VT\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=\dfrac{1}{x+y+z}.\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

7 tháng 1 2021

Cho e xin cách khác nữa đc ko ạ

1 tháng 5 2020

Bài 1:

Đặt a=x-1; b=y-1; c=z-1. Khi đó a;b;c\(\in\)[-1;1], a+b+c=0 và 

\(P=\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3-3abc\)

\(=a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=3\left(a^2+b^2+c^2\right)+3\)

Ta có: \(0\le a^2+b^2+c^2\le2\)

Từ đây ta dễ thấy Min P=3 đạt được khi x=y=z=1

1 tháng 5 2020

Ta xét tống T của 3 số x(1-y);y(1-x);z(1-x)

Ta có T=x(1-y)+y(1-z)+z(1-x)=x+y+z-xy-xz-yz

Theo giả thiết xyz=(1-x)(1-y)(1-z)=1-(x+y+z-xy-xz-yz)-xyz

=> 2xyz=1-T => T=1-2xyz

Nhưng x2y2z2 =[x(1-x)][y(1-y)][z(1-z)]\(\le\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}\)

=> xyz\(\le\)\(\frac{1}{8}\Rightarrow2xy\le\frac{1}{4}\)

Vậy \(T\ge1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(T\ge\frac{3}{4}\)nên trong 3 số x(1-x), y(1-y), z(1-z) có ít nhất một trong 3 số đó \(\ge\frac{1}{4}\left(đpcm\right)\)

19 tháng 9 2016

áp dụngBĐT cô si ta có

\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x

\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y

\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z

khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)

áp dụng BĐT cô si

x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3

do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\)  (đpcm)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)