K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Có \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Thay x,y lần lượt là các cặp \(\left(\frac{a}{b};\frac{b}{c}\right);\left(\frac{b}{c};\frac{c}{a}\right);\left(\frac{c}{a};\frac{a}{b}\right)\) ta được \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{a}{c}\)       \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)       \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
Cộng lại ta có \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Dấu = xảy ra khi a=b=c 

11 tháng 4 2020

Áp dụng bđt AM-GM ta có

\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab\left(a+b\right)}{a^2+ab+b^2}\)\(=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)

Tương tự \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)

\(\frac{c^3}{c^2+ca+a^2}\ge c-\frac{a+c}{3}\)

Cộng từng vế các bđt trên => đpcm

Dấu"=" xảy ra khi a=b=c

11 tháng 4 2020

cảm ơn bn nhiều nha ^^

30 tháng 12 2015

\(\frac{a}{c}=\frac{c}{b}=>\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\) (t/c dãy...)

lại có \(\frac{a}{c}=\frac{c}{b}=>c^2=ab\)

do đó:

\(\frac{a^2+c^2}{c^2+b^2}=\frac{c^2}{b^2}=\frac{ab}{b^2}=\frac{a}{b}\)(đpcm)

tick nhé

30 tháng 12 2015

lời hứa như gió thoảng qua tai

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

14 tháng 9 2016

Ta có \(\frac{1a^2}{b}+b\ge2a\)

\(\frac{1b^2}{c}+c\ge2b\)

\(\frac{1c^2}{a}+a\ge2c\)

Cộng vế theo vế ta được

\(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)+ a + b + c \(\ge\)2(a + b + c)

<=> \(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)\(\ge\)a + b + c

Dùng Swartz 2 số 1 ra luôn mà

NV
24 tháng 2 2020

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

Câu a : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(VT=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{\left(a+b+c\right).9}{2\left(a+b+c\right)}=\frac{9}{2}\) (đpcm)

Dấu "\("="\) xảy ra khi \(a=b=c\)

Câu b : \(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)

Dấu = xảy ra khi a=b=c