K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
3 tháng 9 2021

ta có :

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)

\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)

\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)

Vậy ta có đpcm

3 tháng 9 2021

\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)

=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)

=> a2 + b2 - 2ab - c2 = 0

=> (a - b)2 - c2 = 0

<=> (a - b + c)(a - b - c) = 0

<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)

Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)

Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)

=> đpcm 

11 tháng 5 2018

Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)

\(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)

\(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)

\(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\)  \(\ge0\)

Do a,b,c > 0 

11 tháng 5 2018

Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Đẳng thức xảy ra <=> a = b = c 

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

19 tháng 3 2019

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\frac{\left(ab+bc+ac\right)^2}{ab+bc+ca}=ab+bc+ac\)

\("="\Leftrightarrow a=b=c\)

NV
19 tháng 3 2019

\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

28 tháng 7 2019

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

28 tháng 7 2019

èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc

5 tháng 8 2017

Nothing of ý tưởng cho câu này :<

6 tháng 8 2017

Quy đồng thần chưởng thôi :|, tua qua đoạn quy đồng mẫu tử đi nhé :v

\(BDT\Leftrightarrow\frac{\left(a^4c^2+a^2b^4+b^2c^4-a^3bc^2-a^2b^3c-ab^2c^3\right)+\left(a^3b^3+a^3c^3+b^3c^3-3a^2b^2c^2\right)}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Dễ thấy: \(abc\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\forall a,b,c\)

Giờ cần chứng minh \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

Và \(a^3b^3+a^3c^3+b^3c^3\ge3a^2b^2c^2\)

Áp dụng BĐT AM-GM ta có: 

\(a^3b^3+a^3c^3+b^3c^3\ge3\sqrt[3]{\left(abc\right)^6}=3a^2b^2c^2\) (đúng)

Ko mất tính tq giả sử \(a\ge b\ge c\)

Khi đó \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

\(\Leftrightarrow c^2\left(a-b\right)\left(a^3-b^2c\right)+b^2\left(b-c\right)\left(a^2b-c^3\right)\ge0\) (đúng)

Hay ta có ĐPCM 

7 tháng 8 2016

Sử dụng bđt Côsi:

\(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)

Tương tự và suy ra:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Thu gọn lại, ta có đpcm.

7 tháng 8 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
Cm tương tự : 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
Cộng vế ta đc  : 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
Mặt khác : 
a^2+b^2+c^2>=ab+bc+ca 
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca Dấu
 = xảy ra khi a=b=c