K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

NV
10 tháng 4 2019

a/

Biến đổi tương đương:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(x+y\right)\left(a^2y+b^2x\right)\ge xy\left(a+b\right)^2\)

\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+b^2xy+2abxy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Vậy BĐT ban đầu đúng (đpcm), dấu "=" xảy ra khi \(ay=bx\)

b/

Mở rộng cho 3 số, ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Vậy \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x, y, z dương

Mặt khác ta luôn có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) \(\forall a,b,c\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

Áp dụng:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{\left(a^2\right)^2}{ab}+\frac{\left(b^2\right)^2}{bc}+\frac{\left(c^2\right)^2}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\)

Dấu "=" xảy ra khi \(a=b=c\)

28 tháng 3 2017

Câu b) x/y + y/x >hoặc = 2

<=> x/y + y/x - 2 > hoặc = 0

<=> x^2 + y^2 -2xy /xy >hoặc =0

<=> (x-y)^2 /xy > hoặc = 0

(x-y)^2 > hoặc = 0 với mọi x;y .Dấu"=" xảy ra khi x=y

vì x;y cùng dấu =>xy>0

=>(x-y)^2 / xy > hoặc = 0 luôn luôn đúng.

Mà các Phép biến đổi trên là tương đương

=>x/y + y/x >hoặc =2 với mọi x;y cùng dấu. Dấu "=" xảy ra khi x=y. Nhớ nhé

28 tháng 3 2017

Câu g) a^2 + b^2 > hoặc =1/2 với a+b=1

vì a+b=1 =>(a+b)^2 = 1 =>(1*a+1*b)^2 =1

Áp dụng bất đẳng thức Bunhiacốpski cho 4 số 1;1;a;b ta có

(1*a+1*b)^2 < hoặc = (1^2 + 1^2 )(a^2 + b^2).Dấu "=" xảy ra khi 1^2 / a^2 = 1^2 /b^2 =>1/a = 1/b=>a=b=1/2

Hay 1< hoặc = 2(a^2 +b^2) .Dấu "=" xảy ra khi a=b=1/2

=>a^2 + b^2 > hoặc = 1/2.Dấu "=" xảy ra khi a=b=1/2 =>đpcm

23 tháng 4 2018

Bài 1 :

Theo BĐT cô - si ta có :

\(x^2+y^2\ge2xy\)

\(x^2+1\ge2x\)

\(y^2+z^2\ge2yz\)

\(y^2+1\ge2y\)

\(z^2+x^2\ge2zx\)

\(z^2+1\ge2z\)

Cộng vế theo vế ta được :

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)

\(\Leftrightarrow x^2+y^2+z^2\ge3\left(đpcm\right)\)

Bài 2 :

Ta có :

\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)

\(\Leftrightarrow a^4+b^4+a^4+b^4-ab^3-a^3b-2a^2b^2\ge0\)

\(\Leftrightarrow\left(a^4-a^3b-ab^3+b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\)

22 tháng 4 2018

Dương chứ

22 tháng 4 2018

2)\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)

\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+a^4+b^4-ab^3-a^3b\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+a^3\left(a-b\right)+b^3\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(luôn đúng)

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)