K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Đặt \(p=\frac{a+b+c}{2}\)\(\Rightarrow b+c-a=2\left(p-a\right);a+c-b=2\left(p-b\right);a+b-c=2\left(p-c\right)\)

Ta có : \(\sqrt{p-a}.\sqrt{p-b}\le\frac{p-a+p-b}{2}=\frac{c}{2}\left(1\right)\)

Tương tự : \(\sqrt{p-b}.\sqrt{p-c}\le\frac{a}{2}\left(2\right)\)\(\sqrt{p-c}.\sqrt{p-a}\le\frac{b}{2}\left(3\right)\)

Nhân (1) , (2) , (3) theo vế được : \(\left(p-a\right).\left(p-b\right).\left(p-c\right)\le\frac{abc}{8}\Rightarrow\frac{abc}{2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)}\ge1\Rightarrow\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}\ge1\)Vậy \(MinQ=1\Leftrightarrow a=b=c\Leftrightarrow\)Tam giác  đó là tam giác đều.

10 tháng 6 2016

Do a,b,c là ba cạnh của tam giác nên ta có : a + b - c > 0; a +c-b>0; b+c-a>0

ta có: \(\sqrt{a+b-c}.\sqrt{a+c-b}=\sqrt{a^2-\left(b-c\right)^2}\le\sqrt{a^2}=a\left(1\right).\\ \)

tương tự ta có : \(\sqrt{b+c-a}.\sqrt{a+b-c}\le b.\left(2\right)\)

                              \(\sqrt{a+c-b}.\sqrt{b+c-a}\le c\left(3\right).\)

Nhân vế với vế của (1) (2) và (3) ta được : \(\left(b+c-a\right).\left(a+c-b\right).\left(a+b-c\right)\le abc.\)

                                                                         =>\(\frac{abc}{\left(b+c-a\right).\left(a+c-b\right).\left(a+b-c\right)}\ge\frac{abc}{abc}=1\)

Vậy Qmin = 1 khi a = b = c .

31 tháng 1 2020

\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác ) 

21 tháng 2 2019

:https://youtu.be/cs8x53kQFN4

21 tháng 2 2019

Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)

\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Áp dụng BĐT AM-GM ta có:

\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)

Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)

27 tháng 12 2021

mới lớp 7 a ới

20 tháng 11 2018

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

20 tháng 11 2018

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

8 tháng 1 2021

\(P=\dfrac{ab\left(a+b\right)+c\left(a^2+b^2\right)}{abc}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\).

Áp dụng bất đẳng thức AM - GM:

\(P\ge\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{ab}}{\sqrt{a^2+b^2}}=\left(\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}\right)-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{a^2+b^2}}\ge3\sqrt[3]{\dfrac{a^2+b^2}{ab}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}}-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{2ab}}=6-\left(4-\sqrt{2}\right)=2+\sqrt{2}\).

Đẳng thức xảy ra khi và chỉ khi tam giác ABC vuông cân tại A.