K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

giúp tôi với

 

1 tháng 1 2022

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\\ S=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\\ S=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\)

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

19 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+...+3^8\right)⋮4\)

13 tháng 5 2015

Ta có: 4n-5 chia hết cho 2n-1

Mà 2(2n-1) chia hết cho 2n-1 

    hay 4n-2 chia hết cho 2n-1

Nên 4n-5-(4n-2) chia hết cho 2n-1

  hay 4n-5-4n+2 chia hết cho 2n-1

       -3 chia hết cho 2n-1

=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}

Ta có bảng:

2n-1     1       -1       3        -3

n         1        0        2       -1(loại vì n thuộc N)

Vậy n ={1;0;2}

13 tháng 5 2015

1. Đặt P là thương:
 \(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \( 2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3 \)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1 \)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)

Vậy có ba giá trị của n tự nhiên là 0; 1; 2.

 

8 tháng 1 2017

a) 3 ko chia hết cho 9

các hạng tử còn lại thì chia hết cho 9

vậy S ko chia hết cho 9

b) có 1008 số hạng

có thể chia làm 1008:3=336(nhóm)

Chia 3 vì tổng chia hết cho 70

bạn tự làm tiếp nhé ko thì gửi tin mk giải tiếp cho

8 tháng 1 2017

a)\(3^3+3^5+...+3^{2013}+3^{2015}\) chia hết cho 9

3 không chia hết cho 9 ⇒ S không chia hết cho 9

S = 3.(1 + \(3^2\) + \(3^4\) ) + ... + \(3^{2011}\) (1 + \(3^2\) + \(3^4\) ) (Do S có 1008 số hạng)

S = 3. 91 + ... + \(3^{2011}\).91

S chia hết cho 91 nên S chia hết cho 7 (91 = 7.13)

S = 3(1 + \(3^2\)) + ... + \(3^{2013}\) (1 + \(3^2\) ) (Do S có 1008 số hạng)

S = 3. 10 + ... + \(3^{2011}\).10

S chia hết cho 10. Do (7,10) =1 nên S chia hết cho 7.10 = 70

23 tháng 4 2023

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )

= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )

= 1 . 4 + 32 . 4 + ... + 356 . 4

= 4( 1 + 32 + ... + 356 ) ⋮ 4

Vậy A ⋮ 4

Lại có S = 1 + 3 + 32 + 33 + ... + 357 

S - 1 = 3 + 32 + 33 + ... + 357 

         = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 355 + 356 + 357 )

         = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 ) 

         = 3 . 13 + 34 . 13 + ... + 355 . 13

         = 13( 3 + 34 + ... + 355 ) ⋮ 13

Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = 3 + 32 + 33 + 34 + ... + 358

3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )

2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )

S = ( ...8 ) : 2 = ( ...4 )

Vậy chữ số tận cùng của S là 4

 
23 tháng 4 2023

mn giúp mình với