K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

Chúc bạn học tốt

25/2 = 12.5 nhaundefined

NV
16 tháng 4 2022

\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{ab}\ge4\)

Do đó:

\(ab+\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge ab+\dfrac{2}{ab}=\left(ab+\dfrac{1}{16ab}\right)+\dfrac{31}{16}.\dfrac{1}{ab}\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{31}{16}.4=\dfrac{33}{4}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

2 tháng 7 2016

\(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+a+ab+b=ab+a+b+1\Leftrightarrow ab=1\left(dpcm\right)\)

13 tháng 3 2021

Áp dụng giả thiết \(ab=1\) và bất đẳng thức Cauchy ta có:

\(\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=a-b+\dfrac{2}{a-b}\ge2\sqrt{\dfrac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

13 tháng 3 2021

mình ko hiểu cho lắmoho

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

Áp dụng BĐT Cô-si ta có:

$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$

Ta có đpcm.

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)