K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

Nghe cứ vô lí kiểu gì í :vv

8 tháng 11 2021

mik cũng nghĩ vậy nên đăng lên đây hỏi  ............ bạn xem sửa lại đề rồi làm lại giúp mik với

26 tháng 2 2016

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

15 tháng 7 2017

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

5 tháng 8 2020

Với a; b ; c  khác 0

Ta có: 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}\)(1)

Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)(2)

\(\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}=\frac{ax+by+cz}{a^2+b^2+c^2}\)(3)

Từ (1) ; (2) ; (3) 

=> \(\frac{ax+by+cz}{a^2+b^2+c^2}\)\(=\frac{x^2+y^2+z^2}{ax+by+cz}\)

=> \(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

5 tháng 8 2020

Do: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) => \(\frac{x}{a}=\frac{y}{b};\frac{y}{b}=\frac{z}{c};\frac{z}{c}=\frac{x}{a}\)

<=> \(ay=bx;bz=cy;az=cx\)

<=> \(\left(ay-bx\right)=0;bz-cy=0;az-cx=0\)

<=> \(\left(ay-bx\right)^2+\left(yc-bz\right)^2+\left(az-cx\right)^2=0\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2=2abxy+2bcyz+2cazx\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2+a^2x^2+b^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2cazx\)<=> \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

=> Ta có ĐPCM

23 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)

\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)

Vì (1) luôn không âm mà a,b,c≠0

nên x=y=z=0

\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)

mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)

nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

23 tháng 8 2016

Ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)  

=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)  

Mặt khác ta có:

x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)  

Từ (1) và (2) ta

=> (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2

=> đpcm