K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

ta có

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\left(AM-GM\right)\)

tương tự ta có

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b\ge+c\right)-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{3}{2}\)

do \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

22 tháng 3 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

8 tháng 5 2018

\(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\)

=> \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

20 tháng 5 2018

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\cdot\frac{1}{b}\)

4 tháng 1 2019

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\) (Cô si ngược + Rút gọn)

Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT,ta được: \(VT\ge\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)=3-\frac{ab+bc+ca}{2}\)

Mặt khác,ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (bạn tự c/m,không làm được ib)

Thay x = a; y = b ; z = c,ta có: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)

Suy ra\(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

28 tháng 11 2019

Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:

\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)

\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

28 tháng 11 2019

Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng từng vế của các bđt trên:

\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)

Dễ c/m:  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le3\)

\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)

hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow a=b=1\))

3 tháng 2 2020

Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=9^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Rightarrow a^2+b^2+c^2\ge3\)

Lại có : \(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)

\(\Rightarrow3\ge ab+bc+ac\Rightarrow ab+bc+ac\le3\)

Bất đẳng thức ban đầu tương đương với :

\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{3}{2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{a\left(b^2+1\right)+b\left(c^2+1\right)+c\left(a^2+1\right)}\)

Áp dụng BĐT AM - GM ta có :
\(\hept{\begin{cases}a\left(b^2+1\right)\ge a.2\sqrt{b^2}=2ba\\b\left(c^2+1\right)\ge b.2\sqrt{c^2}=2cb\\c\left(a^2+1\right)\ge c.2\sqrt{a^2}=2ac\end{cases}}\)

\(\Rightarrow\frac{a^2}{a\left(b^2+1\right)}+\frac{b^2}{b\left(c^2+1\right)}+\frac{c^2}{c\left(a^2+1\right)}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(ab+bc+ca\le3\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.3}=\frac{9}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Ta không thể sử dụng trực tiếp bất đẳng thức AM−GM với mẫu số vì bất đẳng thức sẽ đổi chiều

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)\(\le\)\(\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2a}\ge\frac{3}{2}\)
Tuy nhiên, rất may mắn ta có thể dùng lại bất đẳng thức đó theo cách khác

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Ta đã sử dụng bất đẳng thức AM−GMcho 2 số 1+b2≥2b ở dưới mẫu nhưng lại có được một bất đẳng thức thuận chiều? Sự may mắn ở đây là một cách dùng ngược bất đẳng thức AM−GMAM−GM, một kĩ thuật rất ấn tượng và bất ngờ. Nếu không sử dụng phương pháp này thì bất đẳng thức trên sẽ rất khó và dài.

Từ bất đẳng thức trên, xây dựng 2 bất đẳng thức đương tự với b,cb,c rồi cộng cả 3 bất đẳng thức lại suy ra:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a+b+c-\frac{ab+bc+ac}{2}\ge\frac{3}{2}\)
vì ta có ab+bc+ac≤3. Đẳng thức xảy ra khi a=b=c=1.
Với cách làm trên có thể xây dựng bất đẳng thức tương tự với 4 số.

Chúc bạn học tốt!!! k mình nha=))