K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Áp dụng bất đẳng thức Cauchy ta có :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)

30 tháng 9 2019

Áp dụng BĐT Cauchy - Schwarz ta có  :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VF\)

Chúc bạn học tốt !!!

11 tháng 8 2020

Mình nghĩ là: 

a = 1

b = 2

c = 4

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

12 tháng 1 2020

Sai đề ở vế phải. Cái này tôi làm rồi nên biết:  819598 (học 24)

BDT cần cm tương đương

\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)

Áp dụng bdt C-S và AM-GM:

\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)

\(=\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\)

\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)

\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)

\(\ge\left(3+1\right)^2=16=VP\)

dau '=' khi a+b+c=1, b=a+c, 2c=b bn tự giải not

13 tháng 1 2020

Chuyên toán Vĩnh Phúc đây mà :) Em chụp lại nha,chớ e mà viết ra nhiều người nhảy vào cà khịa ghê lắm:(

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

NV
11 tháng 6 2020

Chắc là a;b;c dương

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) và vế trái là P

\(P=\frac{x}{\sqrt{z\left(3x+y\right)}}+\frac{y}{\sqrt{x\left(3y+z\right)}}+\frac{z}{\sqrt{y\left(3z+x\right)}}=\frac{x^2}{x\sqrt{3xz+yz}}+\frac{y^2}{y\sqrt{3xy+xz}}+\frac{z^2}{z\sqrt{3yz+xy}}\)

\(P\ge\frac{\left(x+y+z\right)^2}{x\sqrt{3xz+yz}+y\sqrt{3xy+xz}+z\sqrt{3yz+xy}}=\frac{\left(x+y+z\right)^2}{Q}\)

\(Q=\sqrt{x\left(3x^2z+xyz\right)}+\sqrt{y\left(3xy^2+xyz\right)}+\sqrt{z\left(3yz^2+xyz\right)}\)

\(\Rightarrow Q^2\le3\left(x+y+z\right)\left(xy^2+yz^2+zx^2+xyz\right)\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Rightarrow x^2+yz\le xy+xz\)

\(\Rightarrow zx^2+yz^2\le xyz+xz^2\Rightarrow xy^2+yz^2+zx^2+xyz\le xy^2+2xyz+xz^2\)

\(\Rightarrow xy^2+yz^2+zx^2+xyz\le x\left(y+z\right)^2=\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{4}{27}\left(x+y+z\right)^3\)

\(\Rightarrow Q^2\le3\left(x+y+z\right).\frac{4}{27}\left(x+y+z\right)^3=\frac{4}{9}\left(x+y+z\right)^4\)

\(\Rightarrow Q\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)