K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

A B C E F H M N L S I J T (K)

Gọi S là đỉnh thứ tư của hình bình hành ABSC, I và J lần lượt là trung điểm BC và AH

Áp dụng ĐL Cosin vào hai tam giác BHM, CHN ta có:

\(BM^2=HB^2+HM^2-2HB.HM.\cos\widehat{BHM}\)

\(CN^2=HC^2+HN^2-2HC.HN.\cos\widehat{CHN}\)

Suy ra \(BM^2-CN^2=HB^2+HM^2-HC^2-HN^2\)(Vì \(\Delta\)BNH ~ \(\Delta\)CMH)

\(\Leftrightarrow BM^2-CN^2=\left(HB^2-HN^2\right)-\left(HC^2-HM^2\right)\Rightarrow BM^2-CN^2=BN^2-CM^2\)

\(\Leftrightarrow BM^2+CM^2=BN^2+CN^2\Leftrightarrow\frac{BM^2+CN^2}{2}-\frac{BC^2}{4}=\frac{BN^2+CN^2}{2}-\frac{BC^2}{4}\)

\(\Rightarrow MI^2=NI^2\)(Công thức đường trung tuyến). Kết hợp với JM = JN (=AH/2) suy ra IJ vuông góc MN (1)

Mặt khác trên đường thẳng qua H vuông góc với MN lấy T sao cho \(\frac{HT}{MN}=\frac{HM}{MC}=\frac{HN}{NB}\)

Dễ thấy ^THM = 900 + ^NMH = ^NMC; ^THN = ^MNB. Do đó \(\Delta\)THM ~ \(\Delta\)NMC; \(\Delta\)THN ~ \(\Delta\)MNB (c.g.c)

Suy ra ^HMT = ^MCN; ^HNT = ^NBM. Từ đó CN vuông góc TM; BM vuông góc TN dẫn đến TL vuông góc MN

Mà TH vuông góc MN nên HL vuông góc MN  (2)

Ta lại có I là trung điểm AS, khi đó IJ là đường trung bình trong \(\Delta\)HAS, suy ra IJ // HS  (3)

Từ (1); (2) và (3) suy ra H,L,S thẳng hàng. Vậy HL luôn đi qua S cố định (đpcm).

21 tháng 3 2020

Gọi AD là phân giác của tam giác ABC . Do B,C đối xứng nhau qua OT và BM=CN nên M,N đối xứng qua OT

=>\(BC//MN\)

Ta có \(\widehat{FBM}=180^0-\widehat{ABC}-\widehat{CBM}=180^0-\widehat{ABC}-\widehat{CAB}=\widehat{ACB}\)

chú ý góc đồng .vị \(\widehat{ABC}=\widehat{BFM}\)do đó \(\Delta ABC~\Delta MFB\). từ đó ta chú ý \(FM//BC\)nên theo định lý ta-lét ta có

\(\frac{QC}{QF}=\frac{BC}{FM}=\frac{BM}{FM}=\frac{AC}{AB}=\frac{DC}{DB}\)suy ra \(QD//BF\). tương tự \(PD//CE\)

từ đó theo định lý ta-lét .và tính chất  đường phân giác ta có

\(\frac{DQ}{DP}=\frac{DQ}{BF}.\frac{BF}{CE}.\frac{CE}{DP}=\frac{CD}{BC}.\frac{AB}{AC}.\frac{BC}{BD}=\frac{CD}{BD}.\frac{AB}{AC}=1\).vậy DP=DQ (1)

ta lại có \(\widehat{ADQ}=\widehat{DBQ}+\widehat{BDQ}=\widehat{\frac{BAC}{2}+}\widehat{ACB}+\widehat{ABC}.\)

.vậy tương tự \(\widehat{ADP}=\frac{\widehat{BAC}}{2}+\widehat{ACB}+\widehat{ABC}\)do đó

\(\widehat{ADQ}=\widehat{ADP}\left(2\right)\)

Từ (1) zà (2)  suy ra

 \(\Delta ADQ=\Delta ADP\left(c.g.c\right)\)suy ra \(AP=AQ\)(dpcm)

3 tháng 9 2021

help me pls

 

5 tháng 5 2019

A B C O P D E F K M N Q

Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:

Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.

Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp

Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.

Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)

Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)

=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.

Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)

Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)

Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK

Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

25 tháng 9 2018

Ai làm hộ mình với