K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:

ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$

$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$

$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$

Vì $a,b,c\neq 0$ nên $m=n=p=0$

$\Rightarrow x=y=z=0$

Khi đó:

$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$

$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$

$\Rightarrow$ đpcm

 

23 tháng 2 2019

Áp dụng bất đẳng thức Cosi cho 2019 số dương \(x^{2019};x^{2019};1;1;1;...;1\) (2017 số 1)

\(x^{2019}+x^{2019}+1+1+1+...+1\ge2019\sqrt[2019]{x^{2019}.x^{2019}.1.1.1.....1}=2019x^2\)

\(\Leftrightarrow2x^{2019}+2017\ge2019x^2\)(1)

Dấu "=" xảy ra khi \(x^{2015}=1\Leftrightarrow x=1\)

Tương tự: \(2y^{2019}+2017\ge2019y^2\left(2\right),2z^2+2019\ge2019z^2\left(3\right)\)

Do đó từ (1), (2) và (3) được:  \(2\left(x^{2019}+y^{2019}+z^{2019}\right)+6051\ge2019\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow2.3+6051\ge2019\left(x^2+y^2+z^2\right)\Leftrightarrow2019\left(x^2+y^2+z^2\right)\le6057\)

\(\Leftrightarrow x^2+y^2+z^2\le3\)

Dấu "=" xảy ra khi x = y = z = 1

Vậy GTLN của E là 3 khi x = y = z = 1

28 tháng 8 2019

\(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)

\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)

\(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)

=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)

= xy+xz+xy+yz+xz+yz

=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)

=4038

Vậy P=4038

23 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)

\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)

Vì (1) luôn không âm mà a,b,c≠0

nên x=y=z=0

\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)

mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)

nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)

8 tháng 2 2020

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow x=y=z\)

Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)