K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

#)Giải :

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(\left(a+b\right)+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

14 tháng 7 2019

3abc phải không

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrowđpcm\)

NV
7 tháng 8 2021

\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

7 tháng 8 2021

áp dụng AM GM ta có a^3/b+ab>=2a^2

chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)

mà ta có a^2+b^2+c^2>=(ab+bc+ca)

=>a^3/b+b^3/c+c^3/a>= ab+bc+ca

"=" xảy ra khi a=b=c

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.

 

12 tháng 10 2017

Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath

NV
4 tháng 10 2021

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+c^3=\dfrac{3}{abc}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{abc}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2-\dfrac{1}{c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c^2}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ca}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)

Đề bài thiếu, cần thêm dữ liệu "a;b;c phân biệt"

Khi đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Cho $a=b=c=1$ thì thỏa mãn đẳng thức nhưng $abc+1=2\neq 0$

Bạn xem lại đề. 

 

5 tháng 4 2020

\(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow a+b+c\ge3.\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng ) 

Dấu " = " xảy ra <=> \(a=b=c=\sqrt{3}\)

11 tháng 12 2016

(a+b+c)^3= a^3+b^3 +c^3 +3abc( a+b+c)

= a^3 +b^3 +c^3 + 3(a+b+c)

Th1 nếu a+b+c=0

thì a^3 + b^3 +c^3 = a+b+c

TH2 a+b+c>0

thì a^3 +b^3 +c^3 > a+b+c

NV
14 tháng 9 2021

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)