K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(VT\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)

Cần chứng minh \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le1\)

\(\Leftrightarrow ab+bc+ca+abc-4\ge0\)

BĐT trên đúng theo AM-GM nên ta có đpcm.

22 tháng 8 2019

Tth lam kieu j vay,

7 tháng 11 2017

Đặt \(x=a^{\frac{1}{3}};y=b^{\frac{1}{3}};z=c^{\frac{1}{3}}\Rightarrow xyz=1\) và:

\(BDT\Leftrightarrow\frac{x^3}{x^6+5}+\frac{y^3}{y^6+5}+\frac{z^3}{z^6+5}\le\frac{1}{2}\)

Ta có BĐT phụ \(\frac{4x^3}{x^6+5}\le\frac{x^3+1}{x^6+x^3+1}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x^2+x+1\right)\left(3x^6+6x^3+5\right)}{\left(x^6+5\right)\left(x^6+x^3+1\right)}\le0\forall0< x\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{1}{4}\left(\frac{x^3+1}{x^6+x^3+1}+\frac{y^3+1}{y^6+y^3+1}+\frac{z^3+1}{z^6+z^3+1}\right)\)

Cần chứng minh \(\frac{x^3+1}{x^6+x^3+1}+\frac{y^3+1}{y^6+y^3+1}+\frac{z^3+1}{z^6+z^3+1}\le2\)

\(\Leftrightarrow\frac{x^6}{x^6+x^3+1}+\frac{y^6}{y^6+y^3+1}+\frac{z^6}{z^6+z^3+1}\ge1\)

Có dạng \(\frac{x^{2k}}{x^{2k}+x^k+1}+\frac{y^{2k}}{y^{2k}+y^k+1}+\frac{z^{2k}}{z^{2k}+z^k+1}\ge1\forall xyz=1\)

Với k=1 thì có BĐT Câu hỏi của Vũ Tiền Châu - Toán lớp 9 | Học trực tuyến tương tự với bài này (ko biết AD đã fix lỗi ko dán dc link học 24 vào olm chưa, nếu chưa thì ib t gửi full link )

7 tháng 11 2017

Q.lý nào onl duyệt giúp e với 

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

30 tháng 9 2019

\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Ta cần chứng minh :

\(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) luôn đúng 

Chúc bạn học tốt !!!

30 tháng 9 2019

hoang viet nhat copy nhớ ghi nguồn nha bạn:))Link 

Mà quan trọng là copy mà bạn có hiểu không là chuyện khác:) Bạn hãy giải thích tại sao:

\(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)

21 tháng 4 2020

Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)

\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)

Đến đây t cần chứng minh:

 \(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)

Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)

\(\Rightarrow x+y+z=1\)

(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)

Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)

Nhứng phần kia tương tự

\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)

Lần trước làm không đúng hy vọng bây giờ gỡ lại được

21 tháng 4 2020

nub

Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko

1 tháng 5 2020

BĐT cần chứng minh tương đương với :

\(\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ac}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\)( luôn đúng )

nguồn  : loga 

3 tháng 6 2020

Bất đẳng thức cần chứng minh tương đương: \(\Sigma\frac{2}{a^2+b^2+2}\le\frac{3}{2}\)

\(\Leftrightarrow3-\Sigma\frac{2}{a^2+b^2+2}\ge\frac{3}{2}\Leftrightarrow\Sigma\left(1-\frac{2}{a^2+b^2+2}\right)\ge\frac{3}{2}\)

\(\Leftrightarrow\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)(*)

Xét vế trái của (*), ta có: \(\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)(Theo BĐT Bunyakovsky dạng phân thức)

Đến đây, ta cần chỉ ra rằng \(\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{2\left(a^2+b^2+c^2\right)+2\left(\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\right)}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a^2+b^2+c^2+\Sigma\text{​​}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)

\(\Leftrightarrow2\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\left(a^2+b^2+c^2\right)+9\)\(\Leftrightarrow\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(**)

Theo BĐT Cauchy-Schwarz cho 2 bộ số \(\left(a;b\right)\)và \(\left(c;b\right)\), ta có:\(\left(a^2+b^2\right)\left(c^2+b^2\right)\ge\left(ac+b^2\right)^2\) \(\Rightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)(1)

Tương tự, ta có: \(\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge ab+c^2\)(2); \(\sqrt{\left(c^2+a^2\right)\left(a^2+b^2\right)}\ge bc+a^2\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(Do đó (**) đúng)

Đẳng thức xảy ra khi a = b = c = 1.