K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)

\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\) 

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)  

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\) 

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)

Dự đoán Min P=1 khi x+y+z=3

Đặt \(t=x+y+z\ge3\) 

\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\) 

\(\Rightarrow P\ge1\)

8 tháng 10 2018

bạn là một thiên tài

6 tháng 2 2020

 Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ

\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)

Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)

Thật vậy,BĐT tương đương với:

\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)

\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)

\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )

=> đpcm

6 tháng 2 2020

Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B

Ta có:

\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)

=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)

=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

Tương tự 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)

\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)

\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)

\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)

\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)

Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z 

=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)

=> \(x+y+z\ge3\)với mọi x, y, z dương

Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)

Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)

Đặt: x + y + z = t ( t\(\ge3\))

Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)

Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)

Từ (1); (2) 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)

Dấu "=" xảy ra <=> x= y = z = 1

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

15 tháng 6 2017

\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)

=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)

=>\(x+y+z\ge3\)

Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)

=>TS/MS \(\ge1\)

=>A\(\ge1\)

Dấu = khi x=y=z=1

5 tháng 6 2017

bn có cách giải chưa

bày mk vs

12 tháng 12 2018

Thấy cái đề mà thấy khiếp ...

Ta có : \(x^2-xy+y^2=\frac{3}{4}\left(x^2-2xy+y^2\right)+\frac{1}{4}\left(x^2+2xy+y^2\right)\)

                                       \(=\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y\right)^2\ge\frac{1}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\frac{x+y}{2}\)

Tương tự \(\sqrt{y^2-yz+z^2}\ge\frac{y+z}{2}\)

                \(\sqrt{z^2-zx+x^2}\ge\frac{x+z}{2}\)

Do đó : \(2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{x+z}{x+z+2y}\)

\(\Rightarrow2S+3\ge\left(1+\frac{x+y}{x+y+2z}\right)+\left(1+\frac{y+z}{y+z+2x}\right)+\left(1+\frac{x+z}{x+z+2y}\right)\)

                       \(=2\left(x+y+z\right)\left(\frac{1}{x+y+2z}+\frac{1}{y+z+2x}+\frac{1}{x+z+2y}\right)\)

                                                         \(\ge2\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}\)\(=\frac{9}{2}\)

                                                          (Áp dụng bđt Cô-si dạng engel cho 3 số)

\(\Rightarrow2S+3\ge\frac{9}{2}\)

\(\Rightarrow S\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Vậy ..............

    

13 tháng 5 2021

Đặt \(\sqrt{x};\sqrt{y};\sqrt{z}\rightarrow a,b,c\), ta có : \(a+b+c=1\)

Tìm min của \(A=\frac{ab}{\sqrt{5a^2+32ab+12b^2}}+\frac{bc}{\sqrt{5b^2+32bc+12c^2}}+\frac{ca}{\sqrt{5c^2+32ca+12a^2}}\)

đến đây thấy giống giống bài bất của HN năm nào ấy nhỉ ?