K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

BE là tia phân giác của góc B nên \(\frac{AE}{BC}=\frac{AB}{BC}\Rightarrow\frac{AE}{AC}=\frac{AB}{BC+AB}\Rightarrow AE=\frac{bc}{a+c}\)

tương tự \(AE=\frac{bc}{a+b}\) \(\Rightarrow\frac{S_{AEF}}{S}=\frac{AE\cdot AF}{bc}=\frac{bc}{\left(a+c\right)\left(a+b\right)}\)

tương tự \(\frac{S_{BDF}}{S}=\frac{ac}{\left(b+c\right)\left(a+b\right)},\frac{S_{CDE}}{S}=\frac{ab}{\left(a+c\right)\left(c+b\right)}\)

bất đẳng thức cần chứng minh tương đương với \(\frac{S_{AEF}}{S}+\frac{S_{BDF}}{S}+\frac{S_{CDE}}{S}\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+c\right)\left(b+a\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)

biến đổi tương đương bất đẳng thức trên ta được \(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\ge6abc\)

chia 2 vế cho abc ta được \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

áp dụng cho 3 cặp số suy ra điều phải chứng minh

dấu "=" xảy ra khi a=b=c hay tam giác ABC đều

27 tháng 9 2020

Ta có: SAED = 1/14SABC => ED = 1/14BC

SAFD = 7/50SABC => FD = 7/50BC

=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC

=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)

Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC

SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC

=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)

Gọi I, J lần lượt là trung điểm các cạnh AB, AC

Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4

Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF

Mà ∆IBF cân tại I, ∆AJF cân tại J

=> ^IFB = ^FAJ            (1)

∆IAF cân tại I => ^IFA = ^IAF                   (2)

Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.

25 tháng 9 2023

Tham khảo:

a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:

\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)

\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)

b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)

Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)

\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)

+) Xét tam giác ABC và tam giác DEB ta có:

\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung

\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)

\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2  = 6\sqrt 2 .\)

Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)