K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2020

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\Rightarrow\left\{{}\begin{matrix}bc=-ab-ac\\ab=-bc-ac\\ac=-ab-bc\end{matrix}\right.\)

\(M=\dfrac{1}{a^2+bc-ab-ac}+\dfrac{1}{b^2+ac-ab-bc}+\dfrac{1}{c^2+ab-bc-ac}\)

\(=\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-c\right)-a\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

13 tháng 1 2021

Ta có kết quả tổng quát hơn như sau:

Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$

Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?

 
15 tháng 11 2021

Bài 1:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ab-ac}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\end{matrix}\right.\)

\(M=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

Bài 2:

\(a^3+b^3+c^3-3abc=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(do \(a+b+c=0\))

\(\Rightarrow A=\dfrac{0}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\)

16 tháng 11 2021

chị giải thích cho em cái đoạn này với ạ

 \(\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

24 tháng 11 2021

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

24 tháng 11 2021

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta có:
\(\text{VT}=1-\frac{2ab^2}{2ab^2+1}+1-\frac{2bc^2}{2bc^2+1}+1-\frac{2ca^2}{2ca^2+1}\)

\(\text{VT}=3-\underbrace{\left( \frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)}_{N}\) (1)

Áp dụng BĐT Am-Gm:

\(2ab^2+1=ab^2+ab^2+1\geq 3\sqrt[3]{a^2b^4}\)

\(\Rightarrow \frac{2ab^2}{2ab^2+1}\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}=\frac{2}{3}\sqrt[3]{ab^2}\)

Tương tự với các phân thức còn lại và cộng theo vế, suy ra :

\(N\leq \frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

Áp dụng BĐT AM-GM:

\(\sqrt[3]{ab^2}\leq \frac{a+b+b}{3}\); \(\sqrt[3]{bc^2}\leq \frac{b+c+c}{3}; \sqrt[3]{ca^2}\leq \frac{c+a+a}{3}\)

\(\Rightarrow N\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)\)

\(\Leftrightarrow N\leq \frac{2}{3}(a+b+c)=2\) (2)

Từ \((1),(2)\Rightarrow \text{VT}\geq 1\)

Dấu bằng xảy ra khi \(a=b=c=1\)

11 tháng 11 2017

Áp dụng BĐT B.C.S ta có :

\(\dfrac{1}{2ab^2+1}+\dfrac{1}{2bc^2+1}+\dfrac{1}{2ca^2+1}\ge\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\)

Ta phải chứng minh \(\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\ge1\)

\(\Leftrightarrow2ab^2+2bc^2+2ac^2+3\le9\) do a,b,c dương nên chia cả hai vế cho abc ta được: \(2\left(a+b+c\right)+\dfrac{3}{abc}\le\dfrac{9}{abc}\)

\(\Leftrightarrow6\le\dfrac{6}{abc}\Leftrightarrow abc\le1\) Bất đẳng thức cuối luôn đúng thật vậy:

áp dụng BĐT AM - GM :

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)

\(\Rightarrowđpcm\)

27 tháng 11 2017

Ta có : 1/M=a2+2bc+b2+2ac+c2+2ab

=(a+b+c)2 ➝ M=1/(a+b+c)2

mik nghĩ là thế

11 tháng 12 2017

Có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\)

\(1\Leftrightarrow a^2+2bc=a^2+bc-ab-ac\)

\(\Leftrightarrow a^2+2bc=a\left(a-b\right)-c\left(a-b\right)\)

\(\Leftrightarrow a^2+2bc=\left(a-b\right)\left(b-c\right)\)

\(2\Leftrightarrow b^2+2ac=b^2+ac-ab-bc\)

\(\Leftrightarrow b^2+2ac=b\left(b-c\right)-a\left(b-c\right)\)

\(\Leftrightarrow b^2+2ac=\left(b-c\right)\left(b-a\right)\)

\(3.c^2+2ab=c^2+ab-bc-ac\)

\(\Leftrightarrow c^2+2ab=c\left(c-b\right)-a\left(c-b\right)\)

\(\Leftrightarrow c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\Rightarrow M=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(\Rightarrow M=\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\Rightarrow M=0\)