K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

NV
28 tháng 3 2021

Dễ dàng nhận thấy \(u_n\) là dãy dương

Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)

Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)

Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)

Do đó dãy bị chặn trên bởi 2

Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))

\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0

Lấy giới hạn 2 vế giả thiết:

\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)

\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)

Vậy \(\lim\left(u_n\right)=2\)

NV
1 tháng 3 2021

\(u_{n+1}=\dfrac{2u_n}{u_n+4}\Leftrightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{2}+\dfrac{2}{u_n}\)

Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=2v_n+\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}+\dfrac{1}{2}=2\left(v_n+\dfrac{1}{2}\right)\end{matrix}\right.\)

Đặt \(v_n+\dfrac{1}{2}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}\\x_{n+1}=2x_n\end{matrix}\right.\)

\(\Rightarrow x_n\) là CSN với công bội 2 \(\Rightarrow x_n=\dfrac{3}{2}.2^{n-1}=3.2^{n-2}\)

\(\Leftrightarrow v_n=x_n-\dfrac{1}{2}=3.2^{n-2}-\dfrac{1}{2}\)

\(\Rightarrow u_n=\dfrac{1}{v_n}=\dfrac{1}{3.2^{n-2}-\dfrac{1}{2}}=\dfrac{2}{3.2^{n-1}-1}\)

14 tháng 11 2023

Cho \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=2u_n+6\end{matrix}\right.\)

Tìm số hạng tổng quát của dãy số sau

NV
2 tháng 3 2021

Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)

Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)

\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)

NV
21 tháng 1 2021

Với \(n>1\)

\(n\left(n^2-1\right)u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (1)

\(\Leftrightarrow n^3-n.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\)

\(\Leftrightarrow n^3.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}+n.u_n\) (2)

Thay n bởi \(n-1\) vào (2):

\(\Rightarrow\left(n-1\right)^3u_{n-1}=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (3)

Từ (1) và (3):

\(\Rightarrow n\left(n^2-1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Leftrightarrow n\left(n+1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Rightarrow u_n=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}u_{n-1}=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}.\dfrac{\left(n-2\right)^2}{n\left(n-1\right)}u_{n-2}=...=\dfrac{\left(n-1\right)^2\left(n-2\right)^2....1^2}{\left(n+1\right)n.n\left(n-1\right)...3.2}u_1\)

\(\Rightarrow u_n=\dfrac{\left[\left(n-1\right)!\right]^2}{\dfrac{\left(n+1\right).n^2\left[\left(n-1\right)!\right]^2}{2}}u_1=\dfrac{4}{n^2\left(n+1\right)}\) 

Công thức này chỉ đúng với \(n\ge2\)