K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

quá đơn giản

ở trên  a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c

thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5

min của k là min của 3a^2-3a+5 là bằng 17/4

31 tháng 10 2016

sao hk thấy x, y, z đâu hết

 

1 tháng 11 2016

mk nhầm

a,b,c đó phạm mỹ hạnh

2 tháng 1 2018

Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b+c-a\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b\right)-b\left(c-a\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\\left(c-a\right)\left(c-b\right)=0\end{cases}}\)

\(\Leftrightarrow\)\(a=b=c\)

Thế a = b = c vào A ta được:

\(A=3^3-3a^3+3a^2-3a+5\)

\(A=3\left(a^2-a+\frac{5}{3}\right)\)

\(A=3\left[\left(a-\frac{1}{2}\right)^2+\frac{17}{12}\right]\)

\(A=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

Vậy GTNN của A là 17/4 khi a = b = c = 1/2

21 tháng 3 2019

Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

<=> \(a^2+b^2+c^2-ac-bc-ab=0\Leftrightarrow2a^2+2b^2+2c^2-2ac-2bc-2ab=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

<=> \(\left(a-b\right)^2=0,\left(b-c\right)^2=0,\left(a-c\right)^2=0\)

<=> a=b=c

Thế vào ta có biểu thức:

A=\(3a^3-3a^3+3a^2-3a+5=3\left(a^2-a+\frac{5}{3}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

Giá trị nhỏ nhất của biểu thức A=17/4 

Dấu bằng xảy ra khi a=b=c=1/2

Câu 1: 

a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

b: \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

21 tháng 10 2016

a) Biến đổi vế phải ta có:

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)=a^3+b^3=VT\)

Vậy đẳng thức trên đc chứng minh

b) Sai đề sửa lại

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Biến đổi vế trái ta có:

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=VP\)

Vậy đẳng thức trên đc chứng minh

30 tháng 1 2017

a) Biến đổi vế phải ta được :

(a + b)3 - 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 - 3ab(a + b)

= a3 + b3 + ( 3a2b + 3ab2 ) - 3ab( a + b)

= a3 + b3 + 3ab( a+ b) - 3ab( a + b)

= a3+ b3 = VT

=> a3 + b3 = ( a+b)3 - 3ab( a + b)

 Châu ơi!đăng làm j z

17 tháng 11 2021

\(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(a^2+b^2+c^2-ab-bc-ca\right)}=\dfrac{a+b+c}{2}=2\)

NV
22 tháng 1

\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\x+y+z=3\end{matrix}\right.\)

\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}\)

Ta có đánh giá sau: \(\dfrac{t}{\left(3-t\right)^2}\ge\dfrac{2t-1}{4};\forall t\in\left(0;3\right)\)

Thực vậy, BĐT đã cho tương đương:

\(4t\ge\left(2t-1\right)\left(3-t\right)^2\)

\(\Leftrightarrow-2t^3+13t^2-20t+9\ge0\)

\(\Leftrightarrow\left(9-2t\right)\left(t-1\right)^2\ge0\) (luôn đúng với \(t< 3\))

Áp dụng ta được:

\(P\ge\dfrac{2x-1}{4}+\dfrac{2y-1}{4}+\dfrac{2z-1}{4}=\dfrac{2\left(x+y+z\right)-3}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
22 tháng 1

Cách khác:

Sau khi đặt ẩn phụ, ta có:

\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}=\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\)

\(\Rightarrow3P=\left(x+y+z\right)\left(\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\right)\ge\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)^2\ge\dfrac{9}{4}\)

(BĐT Netsbitt)

\(\Rightarrow P\ge\dfrac{3}{4}\)