K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\\ \)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+a}=1\\ \)

\(=>a=b;b=c;c=a\)

\(=>a=b=c\left(\text{đ}pcm\right)\)

27 tháng 8 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)

=> a=b=c ( đpcm )

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

 

13 tháng 10 2016

đề sai \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

13 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)

\(\Rightarrow VP=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

30 tháng 10 2019

1)

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

Từ $xyz=1$ suy ra:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)

\(\Leftrightarrow xy+yz+xz-x-y-z=0\)

\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)

\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)

\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)

\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)

\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)

Nếu $x=1\Rightarrow yz=1$

$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$

Nếu $y=1\Rightarrow xz=1$

$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$

Nếu $z=1\Rightarrow xy=1$

$A=\frac{1}{y^{2018}}+2019^y-1$

Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

29 tháng 7 2020

Ta có: a + b +  c = 0 => a + b = -c; b + c = -a; a + c = -b

a + b + c = 0 <=> a + b = -c

<=> (a + b)3 = (-c)3 

<=> a3 + 3a2b + 3ab2 + b3 = -c3

<=> a3 + b3 + c3 = -3ab(a + b)

<=> a3 + b3 + c3 = 3abc (vì a + b = -c)

Khi đó: Q = \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

Q = \(1+\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{c\left(b-c\right)}{a\left(a-b\right)}+1+\frac{b\left(b-c\right)}{a\left(c-a\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}+1\)

Q = \(3+\left(\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}\right)+\left(\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{b\left(b-c\right)}{a\left(c-a\right)}\right)+\left(\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\right)\)

Q = \(3+\frac{ab\left(a-b\right)+ac\left(c-a\right)}{bc\left(b-c\right)}+\frac{ab\left(a-b\right)+bc\left(b-c\right)}{ac\left(c-a\right)}+\frac{bc\left(b-c\right)+ca\left(c-a\right)}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left(ab-b^2+c^2-ac\right)}{bc\left(b-c\right)}+\frac{b\left(a^2-ab+bc-c^2\right)}{ac\left(c-a\right)}+\frac{c\left(b^2-bc+ac-a^2\right)}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left[a\left(b-c\right)-\left(b-c\right)\left(b+c\right)\right]}{bc\left(b-c\right)}+\frac{b\left[b\left(c-a\right)-\left(c-a\right)\left(c+a\right)\right]}{ac\left(c-a\right)}+\frac{c\left[c\left(a-b\right)-\left(a-b\right)\left(a+b\right)\right]}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left[a-\left(b+c\right)\right]}{bc}+\frac{b\left(b-\left(c+a\right)\right)}{ac}+\frac{c\left[c-\left(a+b\right)\right]}{ab}\)

Q = \(3+\frac{a\left(a+a\right)}{bc}+\frac{b\left(b+b\right)}{ac}+\frac{c\left(c+c\right)}{ab}\)

Q = \(3+\frac{2a^2}{bc}+\frac{2b^2}{ac}+\frac{2c^2}{ab}\)

Q = \(3+\frac{2a^3+2b^3+2c^3}{abc}\)

Q = \(3+\frac{2\left(a^3+b^3+c^3\right)}{abc}\)

Q = \(3+\frac{2.3abc}{abc}=3+6=9\)

29 tháng 7 2020

Bài làm:

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow abc.M=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(\Leftrightarrow abc.M=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(\Rightarrow M=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}\)

Đặt \(N=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).N=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)\)

Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-c-a\\c=-a-b\end{cases}}\)

Thay vào ta được:

\(N=\frac{c\left(b-c\right)\left(c-a\right)-\left(b+c\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(b-c-a+b\right)+b\left(a-b\right)\left(b-c-c+a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(2b-c-a\right)+b\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(2b+b\right)+b\left(a-b\right)\left(-c-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{3bc\left(c-a\right)-3bc\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{3bc\left(b+c-2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

Mà \(Q=M.N=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}.\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=9\)

Vậy Q = 9 

3 tháng 9 2020

Đặt \(\left(\frac{a-b}{c};\frac{b-c}{a};\frac{c-a}{b}\right)\rightarrow\left(x;y;z\right)\)

Khi đó:

\(S=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}\)

Ta có:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-cb+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{\left(b-a\right)\left(b+a\right)-c\left(a-b\right)}{ab}\cdot\frac{c}{a-b}=\frac{\left(b-a\right)\left(b+a-c\right)}{ab}\cdot\frac{c}{a-b}=\frac{c\left(b+a-c\right)}{ab}\)

\(=\frac{2c^2}{ab}=\frac{2c^3}{abc}\)

Một cách tương tự khi đó:\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=\frac{2\left(a^3+b^3+c^3\right)}{abc}=\frac{2\cdot3abc}{abc}=6\)

Khi đó:\(S=3+6=9\) Bạn để ý rằng \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)

6 tháng 9 2020

sao \(\frac{c\left(b+a-c\right)}{ab}\) lại bằng \(\frac{2c^2}{ab}\)