K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(A=x+y+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\frac{1}{x}+\frac{1}{y}\)

Theo bđt cô si : \(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\) và \(y+\frac{1}{y}\ge2\sqrt{y\cdot\frac{1}{y}}=2\)

Theo bđt Bunhiacopxkia dạng phân thức : \(\frac{1}{x}+\frac{1}{y}=\frac{1^2}{x}+\frac{1^2}{y}=\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\ge\frac{4}{2}=2\)

Cộng vế theo vế 3 bđt trên ta có : \(A\ge2+2+2=6\)

Dấu = xảy ra khi : x=y=1

6 tháng 5 2018

co \(A=2\left(x+\frac{1}{x}\right)+2\left(y+\frac{1}{y}\right)-2\left(x+y\right)..\)

ap dung bdt co- si cho 2 so duong: \(a+b\ge2\sqrt{ab}.\)dau = khi a=b ta co

\(A\ge2.2\sqrt{x.\frac{1}{x}}+2.2\sqrt{y.\frac{1}{y}}-2.2\)

\(\Leftrightarrow A\ge4+4-4=4.\)

dau = xay ra khi a=b=2:1=1.

kl

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

27 tháng 4 2021

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)

\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

30 tháng 6 2017

Phải là giá trị nhỏ nhất nha bạn

Áp dụng BĐT Cô-si dạng Engel

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

30 tháng 6 2017

áp dụng bất đẳng thức cô si ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

21 tháng 4 2019

1/y thành 1/x nhé

H = x2 + 2y2 + 1/x + 24/y

H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y

\(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9

\(\ge\)2 + 24 + 5 - 9 = 22

Dấu " = " xảy ra khi x = 1 ; y = 2

19 tháng 9 2019

Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)

Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)

\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)

Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)

\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...

Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!

P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v

19 tháng 9 2019

Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))

17 tháng 9 2019

\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)

\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)

\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)

Đẳng thức xảy ra khi x = 3y.

Vậy..

17 tháng 9 2019

\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)

\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)

\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)

Dùng điểm rơi a=3

\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)