K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

23 tháng 1 2018

Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)

\(\Rightarrow xyz=\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\)

Bất đẳng thức đã cho tương đương với: \(\Leftrightarrow x^2+y^2+z^2\ge\frac{z}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)-2.\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\left(\forall x;y;z\right)\)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z\Rightarrow a=b=c\left(đpcm\right)\) 

1 tháng 12 2016

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow a+b+c=0\)

Xét : \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right).\left(b+c\right).\left(c+a\right)=-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) luôn chia hết cho 3

9 tháng 5 2018

theo đề ra ta có \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

                          \(\Leftrightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)

                            \(\Leftrightarrow a+b+c=0\)

ta có đề <=>\(\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(a+c\right)=3abc\)

mà a+b+c=0=>a+b=-c,b+c=-a,a+c=-b thay vào biểu thức trên

             \(\Leftrightarrow-3\left(-a\right)\left(-b\right)\left(-c\right)=3abc\)

              <=> \(3abc=3abc\)(hiển nhiên đúng)

vậy BĐT được chứng minh

               

9 tháng 5 2018

đúng thì đúng nhưng cần sửa

\(2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)

<=>\(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=0\)

<=>\(\frac{a+b+c}{abc}=0\)

do a,b,c khác 0 nên abc khác 0

=> a+b+c=0

=> a+b= -c

<=> \(\left(a+b\right)^3=\left(-c\right)^3\)

<=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)

<=>   \(a^3+b^3-3abc=-c^3\)(do ab = -c)

<=> \(a^3+b^3+c^3=3abc\)(đpcm)

bạn nguyên x thị lan hương trình bày còn kém

8 tháng 6 2016

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c+b+a}{abc}\right)\)

Mà a+b+c = 0 nên suy ra:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{0}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

8 tháng 6 2016

Ta có: (\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))\(^2\)\(\frac{1}{a^2}\)+\(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)+\(\frac{2}{abc}\)(\(\frac{a+b+c}{abc}\))

​A+B+C= 0

nên: VT = VP (đpcm)

9 tháng 9 2018

Ta có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)

DO:

\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)

\(\Rightarrow DPCM\)

Tích t vs ku

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b