Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

Từ \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Ta có: \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
\(=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ca}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ca}{c^2-c\left(a-b\right)}\)
\(=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ca}{c\left(c-a+b\right)}\)
\(=\frac{b}{a-b+c}+\frac{c}{b-c+a}+\frac{a}{c-a+b}\)
\(=\frac{b}{a+c-b}+\frac{c}{b+a-c}+\frac{a}{c+b-a}\)
\(=\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}=\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)=-\frac{3}{2}\)

Bài 1:
a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc
= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc
= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )
= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )
= ab.( a + b ) + c2.( a + b )v + c.( a + b)2
= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]
= ( a + b ).( ab + c2 + ac + bc )
= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]
= ( a + b ).[ a.( b + c ) + c.( b + c ) ]
= ( a + b ).( b + c ).( a + c )
b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )
= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b ) - ( b + c ) ]
= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )
= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )
= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )
= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )
= ( a + b ).( b + c ).( a - c )
c) ( x2 + x )2 + 2.( x2 + x ) - 3
Đặt x2 + x = a
Khi đó đa thức trở thành:
a2 + 2a - 3
= a2 + 3a - a - 3
= a.( a + 3 ) - ( a + 3 )
= ( a - 1 ).( a - 3 )
\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )
B2
ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0
\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0
\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0
\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) a = b , b = c , a = c
\(\Rightarrow\) a = b = c

\(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+b\right)^2=c^2\\\left(b+c\right)^2=a^2\\\left(c+a\right)^2=b^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2-c^2=a^2+b^2-\left(a+b\right)^2=-2ab\\b^2+c^2-a^2=b^2+c^2-\left(b+c\right)^2=-2bc\\c^2+a^2-b^2=c^2+a^2-\left(c+a\right)^2=-2ca\end{cases}}\)
Vậy \(B=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
P/s: you tham khảo nha, mk ko biết đúng hay sai
Ta có: \(\frac{ab}{a^2+b^2-c^2}\)
\(=\frac{ab}{a^2+\left(b+c\right)\left(b-c\right)}\)
\(=\frac{ab}{a^2-a\left(b-c\right)}\)
\(=\frac{ab}{a\left(a-b+c\right)}\)
\(=\frac{ab}{-2ab}\)
\(=-\frac{1}{2}\)
Tương tự mà tính

b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c

Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Ta có: \(P=\dfrac{ab^2}{a^2+b^2-c^2}+\dfrac{bc^2}{b^2+c^2-a^2}+\dfrac{ca^2}{c^2+a^2-b^2}\)
\(=\dfrac{ab^2}{\left(a+b\right)^2-c^2-2ab}+\dfrac{bc^2}{\left(b+c\right)^2-a^2-2bc}+\dfrac{ca^2}{\left(c+a\right)^2-b^2-2ac}\)
\(=\dfrac{ab^2}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc^2}{\left(b+c+a\right)\left(b+c-a\right)-2bc}+\dfrac{ca^2}{\left(c+a+b\right)\left(c+a-b\right)-2ac}\)
\(=\dfrac{ab^2}{-2ab}+\dfrac{bc^2}{-2bc}+\dfrac{ca^2}{-2ac}\)
\(=\dfrac{-ab\cdot b}{2ab}+\dfrac{-bc^2}{2bc}+\dfrac{-ca^2}{2ac}\)
\(=\dfrac{-b}{2}+\dfrac{-c}{2}+\dfrac{-a}{2}=\dfrac{-\left(a+b+c\right)}{2}=\dfrac{0}{2}=0\)

ta có: a+b+c=0
\(\left(a+b\right)^2=\left(-c\right)^2\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\\ \)
tương tự \(\left(b+c\right)^2=\left(-a\right)^2\Rightarrow b^2+2bc+c^2=a^2\Rightarrow b^2+c^2-a^2=-2bc\\ \)
\(\left(a+c\right)^2=\left(-b\right)^2\Rightarrow a^2+2ac+c^2=b^2\Rightarrow a^2+c^2-b^2=-2ac\\ \)
thế vào biểu thức \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}\)
\(B=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ac}{-2ac}=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}=\frac{-3}{2}\)
ta có a+b+c=0 => a+b= - c => a^2+2ab+b^2=c^2 => a^2+b^2=c^2-2ab
=>b+c= - a => b^2+2bc+c^2=a^2 => b^2+c^2=a^2-2bc
=>a+c= - b => a^2+2ac+c^2=b^2 =>a^2+c^2=b^2-2ac
từ đó ta có: B = ab / (a^2+b^2-c^2) + bc/ (b^2+c^2-a^2) + ca/ (c^2+a^2-b^2)
=> ab/(c^2 -2ab+c^2)+bc/ (a^2 -2bc+a^2) + ca/ (b^2 -2ac+b^2)
=> B= -ab/2ab - bc/2bc - ca/2ca
=> B = -3/2
Cho a,b,c thõa mãn : a^2 + b^2 +c^2 - ab -bc- ca = 0. Tính: P = (a-b)^2020 + (b-c)^2021 + (c-a)^2022

\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)
=> a = b = c
\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)
\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)
= 0