K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Ta có :

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\)    (2)  

Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )

\(\Leftrightarrow x^2-2xy+y^2>=0\)

\(\Leftrightarrow x^2+y^2>=2xy\)

\(\Leftrightarrow x^2+y^2+2xy>=4xy\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow1>=4xy\)

\(\Leftrightarrow2xy< =\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2xy}>=2\)  (3)

Từ (1) , (2) và (3) , suy ra :  \(K>=4+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)

                             \(\Rightarrow x=y=\frac{1}{2}\)

        Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)

30 tháng 5 2017

K=1/(x^2+y^2)+1/2xy+1/2xy

áp dụng BĐT cauchy schwarz ta có

1/(x^2+y^2)+1/2xy>=(1+1)^2/(x+y)^2=4 (1)

2xy<=(x+y)^2/2=1/2

=>1/2xy>=2 (2)

từ (1) và (2) => Min K=6 khi x=y=1/2

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$

$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$

$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$

$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$

Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$

 

10 tháng 5 2017

\(\dfrac{2}{xy}=\dfrac{4}{2xy}=\dfrac{1}{2xy}+\dfrac{3}{2xy}\)

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow x^2+y^2-2xy+4xy\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

Hay \(1\ge2xy.2\)

\(\Rightarrow2xy\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{1}{2}}=2\)

\(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{4}{2xy}+\dfrac{3}{x^2+y^2}=\dfrac{1}{2xy}+\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}\)

\(\ge2+3.\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)\)

Áp dụng bất đẳng thức Cosy

\(\ge2+3.\left(\dfrac{4}{2xy+x^2+y^2}\right)\)= 2 + 12 = 14

Vậy Min M =14 khi \(x=y=\dfrac{1}{2}\)

2/xy<=1/x^2+1/y^2=1/2

=>xy>=4

Dấu = xảy ra khi x=y=2

(x+y)^2>=4xy>=16

=>x+y>=4

Dấu = xảy ra khi x=y=2

=>x+y+xy+2023>=2023+4+4=2031 

Dấu = xảy ra khi x=y=2

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

22 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(S=\dfrac{1}{x^2+y^2}+\dfrac{5}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{9}{2xy}\)

\(\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}+\dfrac{9}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{9}{2\cdot\dfrac{1}{4}}=22\)

Xảy ra khi \(x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2022

Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$

$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$

$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$

Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$

$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$

15 tháng 5 2022

Dự đoán điểm rơi \(x=y=z=1\)

Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)

Ta cần ghép Cô-si  \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)

Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)

Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)

Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)

Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)

Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)

Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)