K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\) 

Tương tự \(\frac{y^3}{z}+yz\ge2y^2;\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)-\left(xy+yz+zx\right)\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)

28 tháng 10 2017

ta caàn chứng minh bđt 

\(\frac{x}{x+yz}+\frac{y}{y+zx}\ge\frac{x}{x+xz}+\frac{y}{y+yz}=\frac{1}{1+z}+\frac{1}{1+z}=\frac{2}{1+z}\)

tương tự + vào, dùng svác sơ

12 tháng 10 2016

Theo như câu đưới thì

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+yz+xz\)(bất đẳng thức cosi)

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

29 tháng 5 2018

Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)

=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)

dấu = xảy ra <=> x=y=z>=0

29 tháng 5 2018

Thanks

26 tháng 10 2019

\(\text{Σ}\sqrt{\frac{xy}{xy+z}}=\text{Σ}\sqrt{\frac{xy}{xy\left(x+y+z\right)}}=\text{Σ}\sqrt{\frac{xy}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\text{Σ}\left(\frac{\frac{x}{x+y}+\frac{y}{x+z}}{2}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1/3

26 tháng 10 2019

mình không hiểu kí hiệu của bạn là gì??????????bạn giải thích rõ hơn được không

11 tháng 12 2017

Áp dụng BĐT cô si ta có:

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2.\)

tương tự ta có:

\(\frac{y^3}{z}+yz\ge2y^2.\)\(\frac{z^3}{x}+zx\ge2z^2.\)

cộng 3 bất đẳng thức trên lại ta có:

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+yz+xz\ge2\left(x^2+y^2+z^2\right).\)

Mặt khác ta có:\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+xz+yz\)

Đẳng thức xảy ra khi \(x=y=z\)

18 tháng 9 2019

có thể sử dụng bbđt bunhiacopxki dàng phân thức

17 tháng 1 2019

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

18 tháng 1 2019

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1