K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

 Ap dug cosi thoj 
a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

Nhớ k cho mk nha! k đc quên đâu đấy!hihi!

26 tháng 7 2017

Sai đề bạn ơi

27 tháng 3 2020

a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)

\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)

\(\RightarrowĐPCM\)

b/Tương tự ở câu a, ta cũng có:

\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)

Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)

23 tháng 11 2019

a) Đơn giản, tự chứng minh

b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)

Cách 2:

Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))

Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:

\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)

P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Lời giải:
a)

Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)

\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)

\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)

Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)

Dấu "=" xảy ra khi $a=b$

b)

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{a^3}{b}+ab\geq 2a^2\)

\(\frac{b^3}{c}+bc\geq 2b^2\)

\(\frac{c^3}{a}+ac\geq 2c^2\)

Cộng theo vế:

\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)

Mà cũng theo BĐT Cauchy:

\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)

\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

10 tháng 2 2020

Áp dụng bdt AM-GM

\(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\)\(\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)

CMTT, ta được

\(\frac{b}{c^3+bc}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right);\frac{c}{a^3+ac}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\)

Cộng ba bdt

VT \(\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

Quy bài toán về cm

\(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\ge6\) ( vì a+b+c=3)

Dễ dàng chứng minh bđt cuối bằng cách áp dụng AM-GM trực tiếp

ĐPCM