K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

 \(36^n-6\)là số chính phương khi đó tồn tại số nguyên dương k sao cho:

  \(36^n-6=k^2\)

Vì \(\hept{\begin{cases}36⋮6\\6⋮6\end{cases}}\)=> \(k^2⋮6\)=> \(k⋮6\)=> Đặt : k = 6t ( t nguyên dương )

Khi đó: \(36^n-6=36t^2\)

<=> \(6.36^{n-1}-1=6t^2\)

Vì \(6t^2⋮6\)\(6.36^{n-1}⋮6\)=> \(1⋮6\)vô lí

Vậy không tồn tại n.

3 tháng 10 2018

Tham khảo ở đây:

https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn 

\(n^2+n+6=a^2\)

\(\Rightarrow4n^2+4n+24=4a^2\)

\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

Theo (1) ta  thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)

Từ đó ta tìm được a=6n=5.

Vậy n=5 là giá trị cần tìm 

25 tháng 1 2018

chứng minh bài này bằng phản chứng

phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)

muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

mà với n>1 =>n-1>0=>mâu thuẫn

Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được

(�+1)2�2[(�−1)2+1]=�2

Muốn pt trên đúng thi (�−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0

Mà với n>1 =>n-1>0=>mâu thuan

3 tháng 10 2018

Cộng 1 vào 2 vế ta có: 
10x2+50y2+42xy+14x−6y+58≤010x2+50y2+42xy+14x−6y+58≤0
↔(x+7)2+(y−3)2+(3x+7y)2≤0↔(x+7)2+(y−3)2+(3x+7y)2≤0
↔x=−7,y=3↔x=−7,y=3
Vậy... 

Bạn tự ghi nha

chúc hok tốt

3 tháng 10 2018

Đặt A=n2+n+6=k2 (k thuộc N)

→4n2+4n+24=4k2

→(2n+1)2−4k2=−23

→(2n+1−4k)(2n+1+4k)=−23

Đến đây là PT ước số.Tự giải tiếp nhé :)

21 tháng 11 2016

giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1) 
ta có n^2+n-2=k^2-4 
<==>(n-1)(n+2)=(k-2)(k+2) (2) 
@ nếu n=1 , k=2, đúng 
@ nếu n khác 1 
ta có n+2<k+2 (từ (1)) 
==> để (2) xẩy ra thì: n-1>k-2 
mà từ (1) ta có k-1>n-1 
nên: k-1>n-1>k-2 
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1) 
vậy chỉ có n=1 là nghiệm!

22 tháng 11 2016

thanks nha

7 tháng 8 2019

 Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.

Với n = 2 thì \(n^2-n+2=4\)là số chính phương

Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :

\((n-1)^2< n^2-(n-2)< n^2\)

19 tháng 10 2019

n^2+23=x^2 <=>23 = x^2-n^2=(x-n)(x+n). Đến đây bạn lập bảng xét gtri là dc nhé