K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Ta có : \(\hept{\begin{cases}0\le a\le2\\0\le b\le2\\0\le c\le2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a\left(2-a\right)\ge0\\b\left(2-b\right)\ge0\\c\left(2-c\right)\ge0\end{cases}}\)

\(\Rightarrow-a^2+2a-b^2+2b-c^2+2c\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\le2\left(a+b+c\right)=2.3=6\)

Vậy Max P = 6

1 tháng 4 2020

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

25 tháng 2 2018

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có: 

a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1) 

* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0 

⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3) 

⇒ abc ≤ 2ab+2bc+2ca - 4 (2)

Dấu '=' khi có 1 số = 2 

thay (1) vào (2) ta có: 

a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3) 

Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4 

⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có 

a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm) 

Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua 

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Tìm min:
Áp dụng hệ thức quen thuộc của BĐT AM-GM là $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow P=\frac{a^2+b^2+c^2}{ab+bc+ac}\geq 1$

Vậy $P_{\min}=1$ khi $a=b=c=1$

---------------------------

Tìm max:

Đặt $ab+bc+ac=t$

Ta có: \(P=\frac{(a+b+c)^2-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2t}{t}=\frac{9}{t}-2(1)\)

Vì $a,b,c\leq 2\Rightarrow (a-2)(b-2)(c-2)\leq 0$

$\Leftrightarrow abc-2(ab+bc+ac)+4(a+b+c)-8\leq 0$

$\Leftrightarrow 2(ab+bc+ac)\geq abc+4(a+b+c)-8=abc+4$

Mà $a,b,c\geq 0\Rightarrow abc\geq 0$

$\Rightarrow 2(ab+bc+ac)\geq abc+4\geq 4\Rightarrow t=ab+bc+ac\geq 2(2)$

Từ $(1);(2)\Rightarrow P\leq \frac{9}{2}-2=\frac{5}{2}$

Vậy $P_{\max}=\frac{5}{2}$ khi $(a,b,c)=(0,2,1)$ và hoán vị.

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Huyền Subi: $a,b,c$ đều là số không âm thì làm sao mà giá trị min P lại âm được bạn? Hơn nữa, lớp 9 thì chưa học đạo hàm, nên lời giải này không có giá trị.

11 tháng 11 2018

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

13 tháng 11 2019

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

17 tháng 2 2020

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

2 tháng 5 2017

từ gt \(\Rightarrow\)abc>0  => (2-a)(2-b)(2-c)>0 => 
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5