K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

Ta có bđt quen thuộc sau \(\frac{x}{y+z}< \frac{x+m}{y+z+m}\) 

Áp dụng ta được \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
Chứng minh tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

                                     \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Do đó \(VT< \frac{2a+2b+2c}{a+b+c}=2\)

Ta đi chứng minh VP > 2 

Áp dụng bđt Cô-si có \(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

                             \(\Rightarrow\sqrt{a\left(b+c\right)}\le\frac{a+b+c}{2}\)

                             \(\Rightarrow\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}\)

                             \(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)

                                    \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng 3 vế lại ta được \(VP\ge\frac{2a+2b+2c}{a+b+c}=2\)

Do đó \(VP\ge2>VT\)

\(\Rightarrow VT< VP\left(Q.E.D\right)\)

Dấu "=" không xảy ra

doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k

áp dụng co si ta có:

\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)

\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)

\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

\(\Rightarrow Q.E.D\)

4 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)

\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)

\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)

Cộng vế theo vế ,ta được:

\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+3\)

\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)(đpcm)

6 tháng 12 2019

Trâu bò chút!

Đặt \(\sqrt{\frac{a}{b}}=x;\sqrt{\frac{b}{c}}=y;\sqrt{\frac{c}{a}}=z\Rightarrow xyz=1\)

BĐT quy về chứng minh: \(x^3+y^3+z^3\ge x^2+y^2+z^2\)

Để ý rằng: \(x^3=\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{3}{2}x^2-\frac{1}{2}\)

Từ đó ta có:  \(VT-VP=\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{1}{2}\left(\Sigma x^2-3\right)\)

\(\ge\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}\ge0\)

P/s: Nếu thích troll người thì thế ngược lại các biến đã đặt ta tìm được:

\(VT-VP\ge\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2\sqrt{a}+\sqrt{b}\right)}{2b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}\ge0\)

26 tháng 12 2018

Ta có: \(a< a+b\left(a,b>0\right)\Rightarrow\frac{a}{a+b}< 1\)

Có: \(\frac{a}{a+b}=\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}\)

Lại có: \(\frac{a}{b+a}< 1\Leftrightarrow\sqrt{\frac{a}{b+a}}< 1\Rightarrow\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}< \sqrt{\frac{a}{a+b}}\Rightarrow\frac{a}{a+b}< \sqrt{\frac{a}{a+b}}\)

Chứng minh tương tự ta có:

\(\frac{b}{b+c}< \sqrt{\frac{b}{b+c}}\)

\(\frac{c}{c+a}< \sqrt{\frac{c}{c+a}}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\)

                                                                                               đpcm

Sai thì thôi nhé~

Mới lp 8

1 tháng 6 2020

Ta có BĐT sau: \(\sqrt{\frac{1+a^2}{b+c}}\ge\frac{a+1}{\sqrt{2\left(b+c\right)}}\)(*) 

Thật vậy, với a,b,c dương, ta có: (*)\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\left(a+1\right)^2}{2\left(b+c\right)}\)

\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\frac{\left(a+1\right)^2}{2}}{b+c}\Leftrightarrow1+a^2\ge\frac{a^2}{2}+a+\frac{1}{2}\)

\(\Leftrightarrow\frac{\left(a-1\right)^2}{2}\ge0\)(đúng với mọi \(a\inℝ\))

Tương tự, ta có: \(\sqrt{\frac{1+b^2}{c+a}}\ge\frac{b+1}{\sqrt{2\left(c+a\right)}}\)(2); \(\sqrt{\frac{1+c^2}{a+b}}\ge\frac{c+1}{\sqrt{2\left(a+b\right)}}\)(3)

Cộng theo vế của các BĐT (*), (2), (3), ta được:

\(\Sigma\sqrt{\frac{1+a^2}{b+c}}\ge\Sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge\Sigma\frac{a+1}{\frac{\left(b+c\right)+2}{2}}=\Sigma\frac{2\left(a+1\right)}{b+c+2}\)

\(=\Sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)(Theo BĐT Bunhiacopxki dạng phân thức)

\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)

\(\ge\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c+3\right)}{a+b+c+3}=3\)

Đẳng thức xảy ra khi a = b = c = 1

13 tháng 4 2019

Ta có:\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

TT\(\Rightarrow\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng vế theo vế ta được:\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)

"="<=>a+b+c=2(a+b+c)<=>a+b+c=0(vô nghiệm vì a,b,c>0)

Dấu "=" không xảy ra=>đpcm

5 tháng 6 2019

\(VT\ge\frac{4\left(\sum\sqrt{a}\right)^2}{2\sum\sqrt{a}}=2\sum\sqrt{a}=VP\)

5 tháng 6 2019

bạn giải kĩ hơn được k?

22 tháng 9 2020

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c