K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Ta có: 2a+3b là số hữu tỉ 

=> 5(2a+3b)=10a+15b là số hữu tỉ 

5a-4b là số hữu tỉ

=> 2(5a-4b)=10a -8b là số hữu tỉ

=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b

=> b là số hữu tỉ

=> 3b là số hữu tỉ

=> (2a+3b)-3b =2a là số hữu tỉ

=> a là số hữu tỉ

8 tháng 5 2015

a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)

b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)

\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)

=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)

31 tháng 1 2019

\(\hept{\begin{cases}2a+3b+2c=5\\5a+4b+c=55\\a+b-4c=24\end{cases}}\Leftrightarrow8a+8b-c=5+55+24\)

\(\Leftrightarrow8a+8b-c=84\)

\(\Leftrightarrow8\left(a+b\right)-c=84\)

\(\Leftrightarrow8\left(a+b\right)=84+c\)

\(\Rightarrow a+b+c=84\)

\(\Rightarrow TBC\left(a,b,c\right)=\frac{84}{3}=28\)

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

12 tháng 8 2016

a) Từ 5A = 3B \(\Rightarrow\frac{A}{3}=\frac{B}{5}\Rightarrow\frac{A}{9}=\frac{B}{15}\)

Từ 3B=15C \(\Rightarrow\frac{B}{15}=\frac{C}{3}\)

\(\Rightarrow\frac{A}{9}=\frac{B}{15}=\frac{C}{3}\) . Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{A}{9}=\frac{B}{15}=\frac{C}{3}=\frac{A+B+C}{9+15+3}=\frac{180}{27}=\frac{20}{3}\)

\(\Rightarrow\begin{cases}\frac{A}{9}=\frac{20}{3}\\\frac{B}{15}=\frac{20}{3}\\\frac{C}{3}=\frac{20}{3}\end{cases}\) \(\Rightarrow\begin{cases}A=60\\B=100\\C=20\end{cases}\)

b) Từ 3A=4B \(\Rightarrow\frac{A}{4}=\frac{B}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{A}{4}=\frac{B}{3}=\frac{A-B}{4-3}=20\)

\(\Rightarrow\begin{cases}\frac{A}{4}=20\\\frac{B}{3}=20\end{cases}\) \(\Rightarrow\begin{cases}A=80\\B=60\end{cases}\) => C = 180-80-60=40 

Bạn ghi thêm đơn vị độ vào mỗi kết quả nhé :)

12 tháng 8 2016

a ) \(A+B+C=180\left(1\right)\)

  \(5A=3B\Leftrightarrow B=\frac{5}{3}A\left(2\right)\)

  \(5A=15C\Leftrightarrow C=\frac{1}{3}A\)

Thay ( 2 ) và ( 3 ) và ( 1 ) vào :

Ta có : \(A+\frac{5}{3}A+\frac{1}{3}A=180\)

\(3A=180\)

\(\Rightarrow A=60\)

\(\Rightarrow B=100\)

\(\Rightarrow C=20\)

 

11 tháng 10 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3\cdot bk+4b}{5\cdot bk-3b}=\dfrac{b\left(3k+4\right)}{b\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)

\(\dfrac{3c+4d}{5c-3d}=\dfrac{3\cdot dk+4d}{5\cdot dk-3d}=\dfrac{d\left(3k+4\right)}{d\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)

Do đó: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3c+4d}{5c-3d}\)