K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Lâu rồi  hổng thấy ai giải nên giải luôn ak 

Ta có \(5x^2+2xy+2y^2=\left(2x+y\right)^2+\left(x-y\right)^2\ge\left(2x+y\right)^2\Rightarrow\sqrt{5x^2+2xy+2y^2}\ge2x+y.\)

           \(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\Rightarrow\sqrt{2x^2+2xy+5y^2}\ge x+2y.\)

Suy ra \(Q\ge3\left(x+y\right)=3.1=3\)dấu = xảy ra khi \(\hept{\begin{cases}x+y=1\\x-y=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}\)

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

NV
31 tháng 1 2019

\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)

\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)

\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)

\(\Rightarrow P\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z\)

NV
21 tháng 5 2019

\(1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)

\(P=\sum\frac{1}{\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}}\le\sum\frac{1}{\sqrt{\left(2x+y\right)^2}}=\sum\frac{1}{2x+y}\)

\(P\le\sum\left(\frac{1}{x+x+y}\right)\le\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{\sqrt{3}}{3}\)

\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)

24 tháng 4 2019

Ta có 5x2+2xy+2y2=(2x+y)2+(x-y)2>=(2x+y)2

Khi đó P<=\(\frac{1}{2x+y}+\frac{1}{2y+z}+\frac{1}{2z+x}\)

Lại có \(\frac{1}{2x+y}=\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)\)

  1.  

     Tương tự \(\frac{1}{2y+z}\le\frac{1}{9}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{y}\right)\)

                      \(\frac{1}{2z+x}\le\frac{1}{9}\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)

Khi đó P<=\(\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{1}{3}\sqrt{3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\le\frac{\sqrt{3}}{3}\)

Dấu bằng xảy ra khi x=y=z=\(\frac{\sqrt{3}}{3}\)

HAY

24 tháng 4 2019

bài làm láo à ? sau 1 hồi trình bày thì dấu = khi \(x=y=z=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\) ??

20 tháng 4 2017

Đk:\(x\ne-2;y\ne-2\)

Xét \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Rightarrow x^3-y^3+\sqrt{x+2}-\sqrt{y+2}=0\)

\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\dfrac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}\right)\)

Dễ thấy: Với mọi \(x;y\ge-2\) thì \(x^2+xy+y^2+\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}>0\)

\(\Rightarrow x-y=0\Rightarrow x=y\). Thay vào M có:

\(M=x^2+2x+2018=\left(x+1\right)^2+2017\ge2017\)

Đẳng thức xảy ra khi \(x=y=-1\)

20 tháng 4 2017

bài này kq đẹp phết =2017 . cách khác xét

f(t) = t^3 +can(t+2) đi nó đồng biến đó :))

29 tháng 4 2020

Ta có: 

\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)

\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)

\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)

=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)

\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)

\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)

\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)

\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)

=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)

Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)

7 tháng 10 2018

\(A=\sqrt{x^2-5x+10}=\sqrt{x^2-5x+\dfrac{25}{4}+\dfrac{15}{4}}=\sqrt{\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}}\ge\sqrt{\dfrac{15}{4}}\)

Vậy GTNN của A là \(\sqrt{\dfrac{15}{4}}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{5}{2}\)

Ý B thì dễ nhưng giải ra thì ko phù hợp !

7 tháng 10 2018

b) ta có : \(B\ge0\)

dâu "=" xảy ra khi \(2x^2-x-7=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{57}}{4}\\x=\dfrac{1-\sqrt{57}}{4}\end{matrix}\right.\)

c) \(C=x^2+2y^2+2xy-2x+y=x^2+2xy+y^2+y^2+y+\dfrac{1}{4}-2x-\dfrac{1}{4}\)

\(C=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2-2x-\dfrac{1}{4}\ge-2x-\dfrac{1}{4}\)

dâu "=" xảy ra khi \(x=y=\dfrac{-1}{2}\) thế ngược lại rồi kết luận