K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2015

ta có

\(VT=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}-\left(\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}\right)}\)

=\(\sqrt{\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}\right)^2-\frac{2\left(x+y+z\right)}{xyz}}=\left|\frac{1}{x}+\frac{1}{z}+\frac{1}{y}\right|=VP\)

=>ĐPCM

tick cho minh nha

10 tháng 2 2020

Theo AM-GM: \(x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\)

Tương tự: \(\frac{2\sqrt{y}}{y^3+z^2}\le\frac{1}{yz}\)

\(\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{zx}\)

Cộng vế với vế => \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Theo AM-GM; \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}}{2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Dấu " = " xảy ra <=> x=y=z=1

10 tháng 2 2020

Áp dụng bất đẳng thức Cacuhy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cacuchy Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{z^2x^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

3 tháng 2 2020

\(VT=\Sigma_{cyc}\frac{2\sqrt{x}}{x^3+y^2}\le\Sigma_{cyc}\frac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\Sigma_{cyc}\frac{1}{\sqrt{x^2y^2}}=\Sigma_{cyc}\frac{1}{xy}\)

\(=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) (áp dụng BĐT quen thuộc \(ab+bc+ca\le a^2+b^2+c^2\))

Đẳng thức xảy ra khi x = y = z = 1

3 tháng 2 2020

Sửa đề : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{x^2z^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2) :

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Với $x+y+z=0$ ta có:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\left(\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}\right)\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-\frac{2(x+y+z)}{xyz}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

\(\Rightarrow \sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)

Ta có đpcm.

9 tháng 4 2021

ĐỊT MẸ

17 tháng 8 2018

\(x+y+z=0\)=>\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)(*)

ta co :

\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}^2=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}\)

\(\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}=0\) luon dung vi (*)

=> dpcm

ban sua lai de di  dau "-"=>"+"

NV
19 tháng 10 2020

\(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

\(P=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.