K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)

Nếu \(z\ge3\) thì \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{16}{xyz}< \dfrac{1}{3}+\dfrac{16}{27}< 2\). Suy ra z=1 hoặc z=2

❄z=1. Phương trình trở thành \(2xy=x+y+17\Leftrightarrow4xy-2x-2y-34=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=35=35.1=7.5\) ( do x>y)

suy ra (x,y)=(18,1) hoặc (4,3). Ta thu được (x,y,z)=(18,1,1) hoặc (4,3,1) cùng các hoán vị tương ứng vì vai trò 3 biến như nhau

❄z=2. Có lẽ tương tự [?:v)

5 tháng 2 2019

sao lại chọn \(z\ge3\) vậy ạ

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

17 tháng 9 2020

\(\left(x+y\right)^2+3x+y+1=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2>\left(x+y\right)^2\)

\(\left(x+y\right)^2+3x+y+1=\left(x+y+2\right)^2-x-3y-3=z^2\)với x,y,z nguyên dương \(\Rightarrow z^2< \left(x+y+2\right)^2\)

Vậy \(z^2\)là số chính phương ở giữa 2 số chính phương khác là \(\left(x+y\right)^2\)và \(\left(x+y+2\right)^2\)

\(\Rightarrow z^2=\left(x+y+1\right)^2\Leftrightarrow\orbr{\begin{cases}x+y=1-z\left(1\right)\\x+y=z-1\left(2\right)\end{cases}}\)

Xét (1): \(x+y=1-z>0\Rightarrow z< 1\Leftrightarrow z=0\)Vì 0 không là số nguyên dương nên (1) vô nghiệm.

Xét (2): \(x+y=z-1\)lúc này pt có vô số nghiệm nguyên dương (x;y;z), x>0, y>0, z>1