

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(\hept{\begin{cases}5x^2+27x+25\ge0\\x+1\ge0\\x^2-4\ge0\end{cases}}\)(*)
\(pt\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)
\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x^2-4\right)}\)
\(\Leftrightarrow4x^2+2x+4=10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{cases}}\)\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)..............
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)
\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)
\(\Leftrightarrow19\sqrt{2x}=38\)
\(\Leftrightarrow\sqrt{2x}=2\)
\(\Leftrightarrow2x=4\)
hay x=2(thỏa ĐK)
b) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
c) ĐKXĐ: \(x\ge5\)
Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
hay x=9
a)
\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)
b)
\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)
c)
\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
ĐKXĐ: x \ge 2x≥2
Chuyển vế và bình phương hai vế:
\sqrt{5x^2 + 27x + 25} - 5\sqrt{x+1} = \sqrt{x^2 - 4}5x2+27x+25−5x+1=x2−4
\Leftrightarrow \sqrt{5x^2 + 27x + 25} = \sqrt{x^2 - 4} + 5\sqrt{x+1}⇔5x2+27x+25=x2−4+5x+1
\Leftrightarrow 5x^2 + 27x + 25 = x^2 - 4 + 25x + 25 + 10\sqrt{(x+1)(x^2-4)}⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)
\Leftrightarrow 4x^2 + 2x + 4 = 10\sqrt{(x+1)(x^2 - 4)}⇔4x2+2x+4=10(x+1)(x2−4)
\Leftrightarrow 2(x^2 - x - 2) + 3(x+2) = 5\sqrt{(x+1)(x^2 - 4)}⇔2(x2−x−2)+3(x+2)=5(x+1)(x2−4)
Đặt a = \sqrt{x^2 - x - 2} \ge 0;a=x2−x−2≥0; b = \sqrt{x+2} \ge 0b=x+2≥0.
Phương trình trở thành 5ab = 2a^2 + 3b^2 \Leftrightarrow (a-b)(2a-3b) = 0 \Leftrightarrow \left[ \begin{aligned} & a = b\\ & 2a = 3b\\ \end{aligned}\right.5ab=2a2+3b2⇔(a−b)(2a−3b)=0⇔[a=b2a=3b.
+ Với a = ba=b thì \sqrt{x^2 - x - 2} = \sqrt{x+2} \Leftrightarrow x^2 - 2x - 4 = 0 \Leftrightarrow \left[ \begin{aligned} & x = 1-\sqrt5 \ \text{(loại)}\\ & x = 1+\sqrt5 \ \text{(thỏa mãn)}\\ \end{aligned}\right.x2−x−2=x+2⇔x2−2x−4=0⇔[x=1−5 (loại)x=1+5 (thỏa ma˜n).
+ Với 2a = 3b2a=3b thì 2\sqrt{x^2 - x - 2} = 3 \sqrt{x+2}2x2−x−2=3x+2
\Leftrightarrow 4x^2 - 13x - 26 = 0 \Leftrightarrow \left[ \begin{aligned} & x = \dfrac{13 + 3\sqrt{65}}8 \ \text{(thỏa mã)n}\\ & x = \dfrac{13 - 3\sqrt{65}}8 \ \text{(loại)}\\ \end{aligned}\right.⇔4x2−13x−26=0⇔⎣⎢⎢⎢⎡x=813+365 (thỏa ma˜)nx=813−365 (loại).
Vậy phương trình có hai nghiệm x = 1+\sqrt5x=1+5, x = \dfrac{13 + 3\sqrt{65}}8x=813+365.