K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2020

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
15 tháng 3 2019

\(A=\left(1+\frac{y}{2x}+2x+y\right)\left(1+\frac{4}{\sqrt{y}}\right)^2\ge\left(1+2\sqrt{y}+y\right)\left(1+\frac{4}{\sqrt{y}}\right)^2\)

\(\Rightarrow A\ge\left(1+\sqrt{y}\right)^2\left(1+\frac{4}{\sqrt{y}}\right)^2=\left(1+\frac{4}{\sqrt{y}}+\sqrt{y}+4\right)^2\ge\left(1+2\sqrt{4}+4\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

15 tháng 3 2019

giải thích giùm mình cái dòng 2 ( ở cái dấu "=" thứ 2 từ trái qua ) nhé

21 tháng 10 2018

Áp dụng bđt Mincopxki:

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(1+1+1\right)^2}=\sqrt{\left(x+y+z\right)^2+9}\)

\(AM-GM:\left(x+y+z\right)^2+9\ge2\sqrt{9\left(x+y+z\right)^2}=6\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)

31 tháng 1 2020

Cách dùng C-S:

\(VT=\sum\limits_{cyc} \sqrt{x^2+1}=\sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} \sqrt{(x^2+1)(y^2+1)}}\)

\(\geq \sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} (xy+1)}\)\(=\sqrt{\left(x+y+z-3\right)^2+6\left(x+y+z\right)}\ge\sqrt{6\left(x+y+z\right)}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

9 tháng 3 2016

Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\)  Thực vậy bất đẳng thức cần chứng minh tương đương với
 \(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)

Quay lại bài toán, áp dụng nhận xét ta được

\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)

Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)

8 tháng 3 2016

mn ơi ko OLM ko có khóa học lớp 9 àh

7 tháng 10 2017

ta có: \(x+y\ge\frac{1}{5}\)    (*)

<=>\(x+y\ge\frac{\left(2\sqrt{x}-\sqrt{y}\right)^2}{5}\)(vì  \(2\sqrt{x}-\sqrt{y}=1\) )

<=>\(5x+5y\ge4x-4\sqrt{xy}+y\)

<=>\(x+4\sqrt{xy}+4y\ge0\)

<=>\(\left(\sqrt{x}+2\sqrt{y}\right)^2\ge0\) luôn đúng

=>(*) luôn đúng => đpcm

11 tháng 7 2017

Làm biếng nghĩ quá. Chơi cách này cho mau vậy.

\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)

\(\Leftrightarrow\frac{x}{\sqrt{3\left(1-x\right)\left(1+x\right)}}+\frac{y}{\sqrt{3\left(1-y\right)\left(1+y\right)}}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{x}{2-x}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{1-y}{1+y}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow4y^2-4y+1\ge0\)

\(\Leftrightarrow\left(2y-1\right)^2\ge0\left(đung\right)\)

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c