K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Do x, y là 2 số thực không âm

=> \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

                            Áp dụng bất đẳng thức Cô- si cho 2 số dương x,y ta được

                                        \(x+y\ge2\sqrt{xy}\)

                                        \(\Rightarrow\frac{x+y}{2}\ge\sqrt{xy}\) ( Điều phải chứng minh)

          kb vs mk nha , nhớ k cho mk nhé

     cảm ơn nhiều

1 tháng 6 2019

Ta có \(\sqrt{xy}\le\frac{x+y}{2}\)

<=>    \(2\sqrt{xy}\le x+y\)

<=>    \(x-2\sqrt{xy}+y\ge0\)

<=>   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) ( luôn đúng )

14 tháng 3 2020

Áp dụng BĐT AM-GM: $VP\leq \frac{25}{yz+zx+xy+4}$

Cần c/m: $\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}$\leq \frac{25}{yz+zx+xy+4}$

$\Leftrightarrow (yz+zx+xy)(xy^{2}+yz^{2}+zx^{2})+4(xy^{2}+yz^{2}+zx^{2})\leq 25xyz+4(yz+zx+xy)+16$

BĐT trên sẽ được c/m nếu c/m được: $xy^{2}+yz^{2}+zx^{2}\leq 4$.

KMTTQ, g/sử y nằm giữa x và z. $\Rightarrow x(x-y)(y-z)\geq 0$

$\Leftrightarrow xy^{2}+yz^{2}+zx^{2}\leq y(x^{2}+xz+z^{2})\leq y(x+z)^{2}$

Đến đây áp dụng BĐT AM-GM:

$y(x+z)^{2}=4.y.(\frac{x+z}{2})(\frac{x+z}{2})\leq \frac{4(y+\frac{x+z}{2}+\frac{x+z}{2})^{3}}{27}=\frac{4(x+y+z)^{3}}{27}=4$ (đpcm)

Dấu bằng xảy ra khi, chẳng hạn $x=0;y=1;z=2$

12 tháng 4 2020

Áp dụng BĐT AM-GM và BĐT Rearrangement  ta có:

\(VT=\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\)

\(=\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+zx^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)\(\le\frac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\le\frac{21+\frac{\left(\frac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{21+4}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\)

Dấu "=" xảy ra <=> (x;y;z)=(2;1;0) và hoán vị của nó

28 tháng 12 2019

\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)

Cần chứng minh : \(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\Leftrightarrow\sqrt{x}+\sqrt{y}-x-y\le\frac{1}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y}-2x-2y\le1\)

\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\) 

Vì BĐT cuối luôn đúng nên BĐT cần chứng minh luôn đúng khi x = y = \(\frac{1}{4}\)

28 tháng 12 2019

\(VT=\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{\sqrt{2xy\left(x+y\right)}}{x+y}-\frac{x+y}{2}\)

\(\le\frac{\left(x+y\right)\sqrt{\frac{x+y}{2}}}{x+y}-\frac{x+y}{2}\) . Cm : \(\sqrt{\frac{x+y}{2}}-\frac{x+y}{2}\le\frac{1}{4}\)

Đặt \(x+y=t>0\)thì :

\(\sqrt{\frac{t}{2}}-\frac{t}{2}\le\frac{1}{4}\Leftrightarrow-\frac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) ( đúng )

Chúc bạn học tốt !!!

19 tháng 5 2019

Ta có : \(xy\left(x+y\right)^2\le\frac{1}{64}\)\(\Rightarrow\)\(\sqrt{xy\left(x+y\right)^2}\le\sqrt{\frac{1}{64}}\)

\(\Rightarrow\)\(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)

ta cần c/m \(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)

Thật vậy, ta có

Áp dụng BĐT : \(ab\le\frac{\left(a+b\right)^2}{4}\). Dấu "=" xảy ra \(\Leftrightarrow\)a = b

\(\sqrt{xy}\left(x+y\right)=\frac{1}{2}.2\sqrt{xy}\left(x+y\right)\le\frac{1}{2}.\frac{\left(x+2\sqrt{xy}+y\right)^2}{4}=\frac{\left(\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2\right)^2}{4}.\frac{1}{2}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}=\frac{1}{8}\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{4}\)

16 tháng 5 2017

\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)

Ta có:

\(VT\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}\)

\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)

Giờ ta chỉ cần chứng minh 

\(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\)

\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)

\(\Leftrightarrow\left(2x-2\sqrt{x}+\frac{1}{2}\right)+\left(2y-2\sqrt{y}+\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\)(đúng)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\) 

12 tháng 5 2016

\(x+y=2\Rightarrow y=2-x\)

\(A=\sqrt{x^2+\left(2-x\right)^2}+\sqrt{x\left(2-x\right)}=\sqrt{2x^2-4x+4}+\sqrt{-x^2+2x}\)

\(A^2=x^2-2x+4+2\sqrt{2x^2-4x+4}.\sqrt{-x^2+2x}\)

\(+A\ge2\Leftrightarrow A^2\ge4\Leftrightarrow x^2-2x+4+2\sqrt{-2x^4+8x^3-12x^2+8x}\ge4\)

\(\Leftrightarrow2\sqrt{-2x^4+8x^3-12x^2+8x}\ge x\left(2-x\right)\)

\(\Leftrightarrow4\left(-2x^4+8x^3-12x^2+8x\right)\ge x^2\left(2-x\right)^2\text{ }\left(do\text{ }x\left(2-x\right)\ge0\right)\)

\(\Leftrightarrow x\left(2-x\right)\left(9x^2-18x+16\right)\ge0\)

Bất đẳng thức trên đúng vì :

\(x\ge0;\text{ }2-x=y\ge0;\text{ }9x^2-18x+16=9\left(x-1\right)^2+7>0\)

Vậy \(A\ge2\)

Tương tự, ta có thể chứng minh \(A\le\sqrt{6}\)

12 tháng 5 2016

Cách khác: \(x+y=2\Rightarrow x^2+y^2+2xy=4\Rightarrow x^2+y^2=4-2xy\)

Đặt \(t=\sqrt{xy};t\ge0;\text{ }t\le\frac{x+y}{2}=1\)

\(\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t^2}+t\)

\(+\sqrt{4-2t^2}+t\ge2\Leftrightarrow\sqrt{4-2t^2}\ge2-t\)

\(\Leftrightarrow4-2t^2\ge t^2-4t+4\text{ }\left(do\text{ }2-t>0\right)\)

\(\Leftrightarrow3t^2-4t\le0\Leftrightarrow t\left(3t-4\right)\le0\)

BĐT trên đúng đo \(t\ge0;\text{ }3t-4\le3.1-4=-1<0\)

Vậy \(\sqrt{4-2t^2}+t\ge2\)

Làm tương tự với vế còn lại.