K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Chịu rồi

bạn ơi bn

tk nhe#@@@@@@@@@@@@@@@@@@@@@

xin do mà

28 tháng 10 2016

c làm cho t đê đã

giúp mình với ạ, cần gấp1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.a) Tính: RB/RC,PA/PM ?b) Đường thẳng đi qua N song song với BC cắt...
Đọc tiếp

giúp mình với ạ, cần gấp

1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.

2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.

a) Tính: RB/RC,PA/PM ?

b) Đường thẳng đi qua N song song với BC cắt AC tại T. Chứng minh rằng: CN, BT cắt nhau tại trung điểm của AM.

3) Cho tam giác ABC có trung tuyến AI và trọng tâm G. Qua G dựng đường thẳng d bất kì cắt các cạnh AB, AC lần lượt tại M, N.

a) Chứng minh rằng: AB/AM + AC/AN  có giá trị không đổi khi (d) thay đổi.

b) Xác định vị trí của đường thẳng (d) để AM/AB+AN/AC đạt GTNN.

4) Cho tam giác ABC ,một đường thẳng thay đổi cắt các cạnh AB, AC tại E, F sao cho: AB/AE+AC/FA=4 . Chứng minh rằng EF luôn đi qua một điểm cố định.

5) Cho tam giác nhọn ABC và điểm D bất kì trên cạnh BC, lấy một điểm E thuộc đoạn AD, F thuộc đoạn DE. Một đường thẳng qua F song song với BC cắt AB, EB, EC, AC theo thứ tự tại M, P, Q, N. Đường thẳng MD và EB cắt nhau tại R, ND và EC cắt nhau tại S, DP và AB cắt nhau tại G, DQ và AC cắt nhau tại H. Chứng minh rằng:

a) MP/BD=NQ/DC

b) RS // BC

c) GH // RS

0
4 tháng 8 2016

d)  2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\)                              (1)

2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\)                                 (2)

Từ  (1)  và  (2)  ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)

Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)

Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).

3 tháng 8 2016

a) Tg OBD và Tg ECO có 
g OBD = g ECO (tg ABC cân tại A) (1) 
g BOD = g OEC (gt) (2) 
(1) và (2) => Tg OBD đồng dạng Tg ECO 
=>OB/EC = BD/CO => OB*CO = EC*BD. 
Mà OB = CO => OBbình = EC*BD 
b) Ta có: gDOE = 180 độ - (gBOD + gEOC) 
= 180 độ - (gOEC + gCOE) 
= 180 độ - (180 độ - gOCE) 
= gOCE = gBCA = const (3) 
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO => 
=> OD*BO = EO*BD => EO/OB = OD/BD (4) 
Mặt khác: từ(3) =>gDOE = gOBD (5) 
từ (4) và (5) => TgEOD đồng dạng TgOBD 

Bài 8:

1: Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

2: Sửa đề: EF=1/2BC

Xét ΔACB có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình của ΔACB

=>\(EF=\dfrac{1}{2}CB\)

3: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là phân giác của góc EAF

Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có AM là phân giác của góc EAF

nên AEMF là hình thoi

=>AE=MF=FM=AF

Bài 6: Cho tam giác ABC lấy điểm I thuộc cạnh AB sao cho IA=IB.Qua I kẻ đường thẳng song song với BC cắt AC tại K1) Chứng minh K là trung điểm AC2) Chứng minh K là đường trung bình của tam giác ABCBài 7: Cho tam giác ABC có độ dài BC=a và M là trung điểm của AB và AC.1) Chứng minh N là trung điểm AC 2) Tính độ dài đoạn thẳng MN theo aBài 8: Cho tam giác ABC cân tại A có M là trung điểm BC. Kẻ Mx//AC cắt AB tại E; kẻ My//AB...
Đọc tiếp


Bài 6: Cho tam giác ABC lấy điểm I thuộc cạnh AB sao cho IA=IB.Qua I kẻ đường thẳng song song với BC cắt AC tại K
1) Chứng minh K là trung điểm AC
2) Chứng minh K là đường trung bình của tam giác ABC
Bài 7: Cho tam giác ABC có độ dài BC=a và M là trung điểm của AB và AC.
1) Chứng minh N là trung điểm AC 
2) Tính độ dài đoạn thẳng MN theo a
Bài 8: Cho tam giác ABC cân tại A có M là trung điểm BC. Kẻ Mx//AC cắt AB tại E; kẻ My//AB cắt AC tại F.Chứng minh:
1)E;F là trung điểm của AB và AC  2) AF=1/2BC       3) ME=MF=AE=AF
Bài 9: Cho tam giác ABC có AH là đường cao.Lấy E và K lần lượt là trung điểm của AB và AC.
1) Chứng minh EK là đường trung bình của tam giác ABC 
2) Đường thẳng EK căt AH tại I. Chứng minh I là trung điểm của AH
3) Biết BC=10cm. Tính EK
Bài 10: Cho hình thang ABCD (AB//CD).Qua trung điểm M của AD vẽ đường thẳng song song với AB cắt AC tại N và BC tại K
1) Chứng minh : N là trung điểm của AC và K là trung điểm của BC
2) Cho AB=1/2DC và DC=20cm. Tính độ dài AB;MN;NK;MK

 


 

1

Bài 9:

1: Xét ΔABC có

E,K lần lượt là trung điểm của AB,AC

=>EK là đường trung bình của ΔABC

2: Vì EK là đường trung bình của ΔABC

nên EK//BC và \(EK=\dfrac{1}{2}BC\)

=>EI//BH

Xét ΔABH có

E là trung điểm của AB

EI//BH

Do đó: I là trung điểm của AH

3: \(EK=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

bài 10:

1: Xét ΔADC có

M là trung điểm của AD

MN//DC

Do đó: N là trung điểm của AC

Xét hình thang ABCD có

M là trung điểm của AD

MK//AB//CD

Do đó: K là trung điểm của BC

2: \(AB=\dfrac{1}{2}DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)

Xét ΔADC có

M,N lần lượt là trung điểm của AD,AC

=>MN là đường trung bình của ΔADC

=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)

Xét ΔCAB có

N,K lần lượt là trung điểm của CA,CB

=>NK là đường trung bình của ΔCAB

=>\(NK=\dfrac{1}{2}AB=5\left(cm\right)\)

MK=MN+NK

=10+5

=15(cm)