K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Ch0 a>0 và n là 1 số tự nhiên

Chứng minh rằng an+1an−2⩾n2(a+1a−2)

Lời giải:

Bất đẳng thức tương đương với (an−1+an−2+...+a+1)≥n2an−1 (hiển nhiên theo AM-GM)

Cách khác:

Do tính đối xứng giữa a và 1a nên ta có thể giả sử a ≥ 1.  đặt √a =x ≥ 1.bdt ⇔ x2n+1x2n−2≥n2(x2+1x2−2)⇔(xn−1xn)2≥n2(x−1x)2⇔x^{n}-\frac{1}{x^{n}}\geq n(x-\frac{1}{x})$①.

Với x=1 thì ① đúng

Với x>1 thì ① ⇔xn−1+xn−3...+1xn−3+1xn−1≥n (đúng vì theo bđt AM-GM).

Dấu bằng xảy ra khi x=1 ⇔a=1

 

15 tháng 2 2016

đáp án là 24

15 tháng 2 2016

bài này được liệt vào câu hỏi hay nhưng mk cũng chưa nghĩ ra

16 tháng 8 2020

ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))

vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)

dấu "=" xảy ra khi a=b

chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)

cộng các bất đẳng thức (1) (2) và (3) theo vế ta được

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)

6 tháng 2 2020

* Ta có:

\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

* Tương tự ta có: 

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)

(Dấu "=" xảy ra khi a = b = c = 673)

Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)

Từ giả thiết \(1\le a\le2\) =>  ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)

Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)

Vì vậy ta có P:

\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức

13 tháng 1 2019

Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)

vì , ta có 

(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức

Ta có :

\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)

<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)

<=> \(1-3abc\ge ab+bc+ac-2abc\)

=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)

hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)

Sai thì bảo mình nhé

13 tháng 1 2019

xin lỗi Dòng thứ 8 và 9 phải là 

\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)

\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)