K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

web wiki có cách cm vs quy nạp đó

30 tháng 1 2017

Bất đẳng thức trung bình cộng và trung bình nhân – Wikipedia tiếng Việt

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Các giao điểm của (E) với trục hoành có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)

Các giao điểm của (E) với trục tung có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y =  \pm b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{B_1}\left( {0; - b} \right)\\{B_2}\left( {0;b} \right)\end{array} \right.\)

Ta có \({A_1}{A_2} = 2a,{B_1}{B_2} = 2b\).

b) Do M thuộc (E) nên ta có \(\frac{{x_o^2}}{{{a^2}}} + \frac{{y_o^2}}{{{b^2}}} = 1\)

Do \(a > b > 0\) nên ta có \(\frac{{x_o^2}}{{{a^2}}} \le \frac{{x_o^2}}{{{b^2}}}\). Suy ra \(1 \le \frac{{x_o^2}}{{{b^2}}} + \frac{{y_o^2}}{{{b^2}}} \Rightarrow {b^2} \le x_o^2 + y_o^2\)

Tương tự ta có \(\frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}}\) nên \(1 \ge \frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}} \Rightarrow {a^2} \ge x_o^2 + y_o^2\)

Vậy \({b^2} \le x_o^2 + y_o^2 \le {a^2}\)

Ta có \(OM = \sqrt {x_o^2 + y_o^2} \) suy ra \(b \le OM \le a\)

NV
15 tháng 1

Do \(a_1;a_2;...a_n\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}0\le a_1\le1\\0\le a_2\le1\\...\\0\le a_n\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\left(1-a_1\right)\ge0\\a_2\left(1-a_2\right)\ge0\\...\\a_n\left(1-a_n\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\ge a_1^2\\a_2\ge a_2^2\\...\\a_n\ge a_n^2\end{matrix}\right.\)

\(\Rightarrow a_1^2+a_2^2+...+a_n^2\le a_1+a_2+...+a_n\)

Do đó ta chỉ cần chứng minh:

\(\left(1+a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow1+2\left(a_1+a_2+...+a_n\right)+\left(a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n\right)^2-2\left(a_1+a_2+...+a_n\right)+1\ge0\)

\(\Leftrightarrow\left(a_1+a_2+...+a_n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra tại \(\left(a_1,a_2,...,a_n\right)=\left(0,0,..,1\right)\) và các hoán vị

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

+) Từ phương trình \({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_1}} \) là \(\left( {{a_1};{b_1}} \right)\)

+) Từ phương trình \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_2}} \) là \(\left( {{a_2};{b_2}} \right)\)

+) \(\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\overrightarrow {{n_1}} .\overrightarrow {{n_2}} }}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{{a_1}{a_2} + {b_1}{b_2}}}{{\sqrt {{a_1}^2 + {b_1}^2} \sqrt {{a_2}^2 + {b_2}^2} }}\)

NV
14 tháng 9 2020

Đặt vế trái biểu thức là P

- Nếu một trong các số bằng 0 thì biểu thức vô nghĩa

- Nếu một trong các số bằng 1 thì vế trái lớn hơn 1 nên đẳng thức ko xảy ra

- Nếu tất cả các số đều lớn hơn 1, không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_n\)

\(\Rightarrow a_1\ge2;a_2\ge3;...;a_n\ge n+1\)

\(\Rightarrow P=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{\left(n+1\right)^2}\)

\(\Rightarrow P< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)

\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}< 1\)

\(\Rightarrow\) Không thể tồn tại đẳng thức \(P=1\)